Hardware Design I Chap. 2 Basis of logical circuit, logical expression, and logical function

Computing Architecture Lab.

Hajime Shimada

E-mail: shimada@is.naist.jp

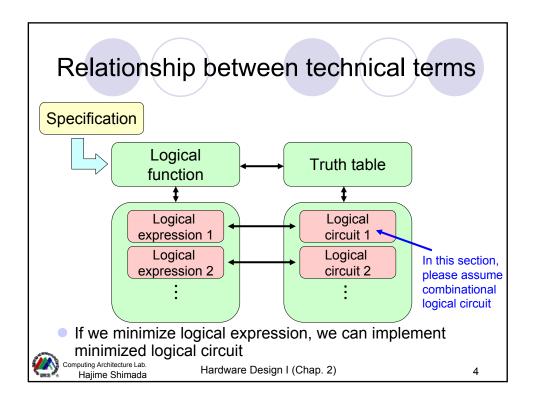
1

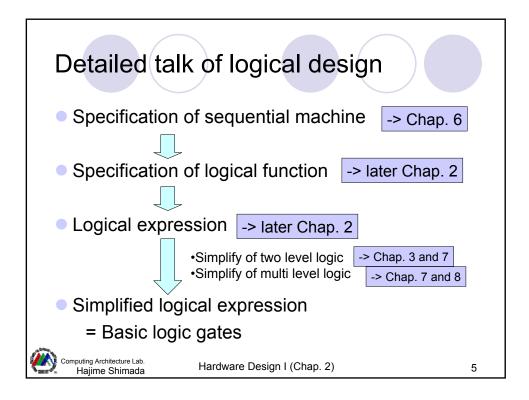
Outline

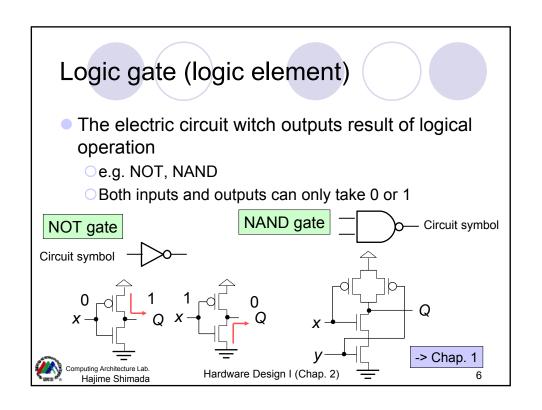
- Combinational logical circuit
 - Logic gate (logic element)Definition of combinational logical circuit
 - O How to create output signal?
- Logical function
 - Definition of logical function
 - O Relationship between logical circuit
- Logical expression
 - O Definition of logical expression
 - Minterm and maxterm
 - Axiomatic systems
 - Amount of logical expression

Hardware Design I (Chap. 2)

Review: outlined flow of LSI design Define specification Definition in hardware description language Architectural design Logic synthesis Circuit with basic logic gates Logical design This chapter treats this area _ Place and route Mask pattern Logical function Logical expression OPhysical design Manufacturing nputing Architecture Lab. Hajime Shimada Hardware Design I (Chap. 2) 3

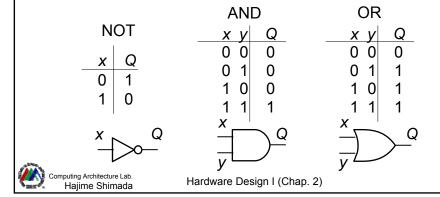


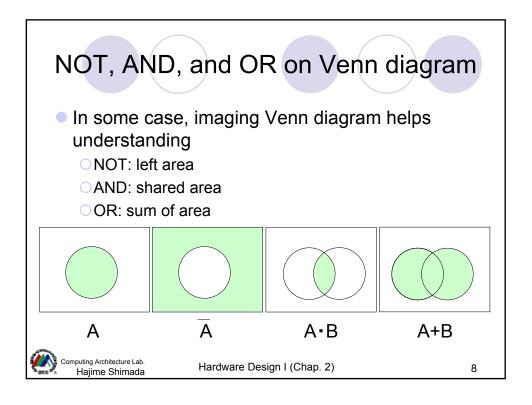


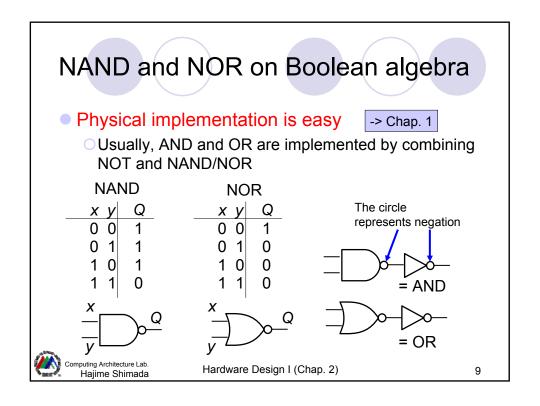


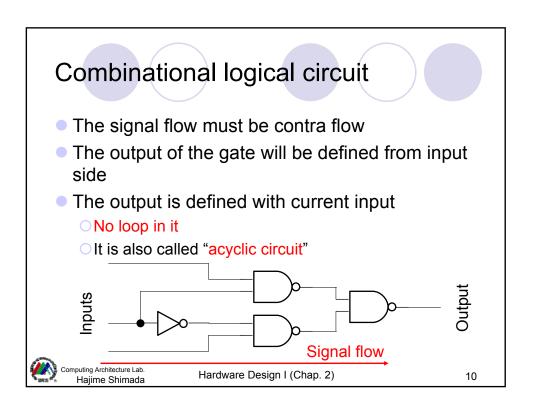
NOT, AND, and OR on Boolean algebra

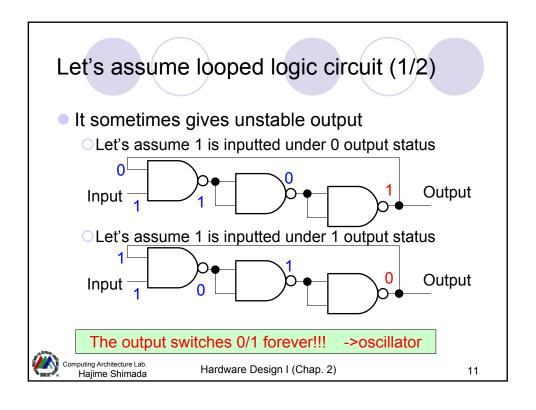
- Logical circuit operates on Boolean algebra
- Here's basic logic from Boolean algebra

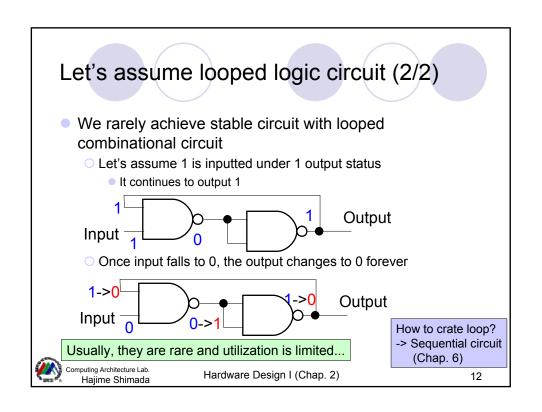






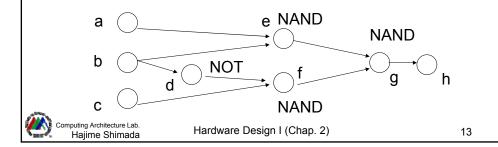






Definition of combinational logic with directed graph

- Set of vertices: V={a, b, c, d, e, f, g, h}
- Set of edges: E⊆(V × V)
 E={(a,e), (b,e), (b,d), (c,f), (d,f), (e,g), (f,g), (g,h)}
- Label of vertex: NOT, NAND, and so on



If you felt "what is directed graph?" ...

- Please relearn "graph theory"
 - The sets of vertices and edges
 - oe.g. network connection graph, schematic diagram, ...
 - Specific graph: tree, directed graph, weighted graph, ...
- It is widely used in informatics world
 - Syntax tree (compiler)
 - Markov chain (voice recognition)
 - OPerceptron (neural network)

Hardware Design I (Chap. 2)

About technical terms of set theory

- Set
 - Gathered set of elements
 - ○e.g. {0, 1}, {a, b, ..., z}, ...
- Cartesian product
 - OA set of ordered pairs of elements
 - \bigcirc Notation: A \times B (A,B: set)
 - \bigcirc e.g. $\{0, 1\} \times \{a, b\} = \{(0,a), (0,b), (1,a), (1,b)\}$
 - Other notation: V², {0, 1}²

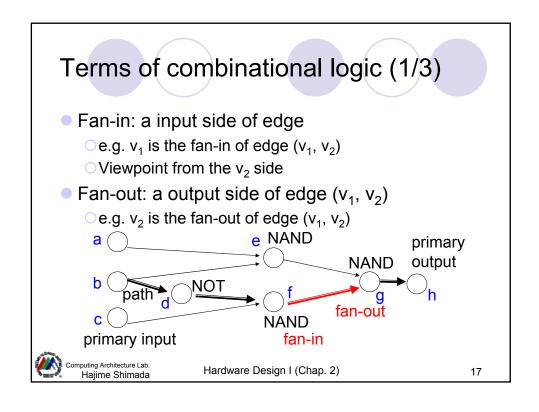
Hardware Design I (Chap. 2)

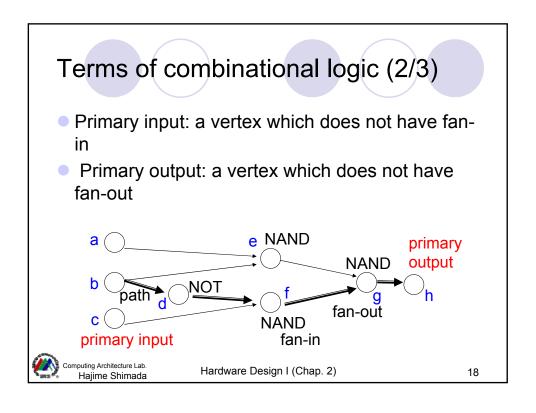
1

The syntax of combinational logic from graph theory

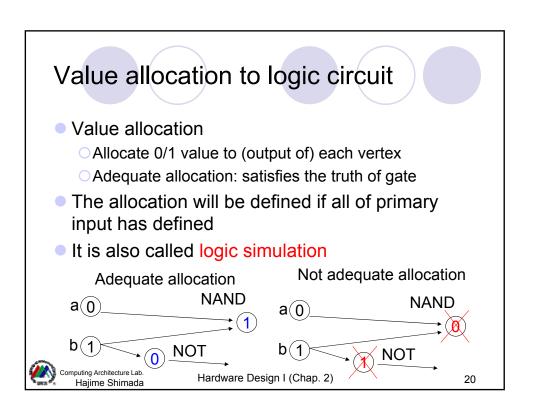
- Directed Acyclic Graph (DAG): (V, E)
 - V: set of vertices
 - \bigcirc E: set of edges, subset of (V \times V)
 - (V × V) denotes set of Cartesian product
- Allocate logic gate (e.g. NAND) label to vertices
 - Allocate 1 label to 1 vertex

Hardware Design I (Chap. 2)





Terms of combinational logic (3/3) Path: a set of edges from primary input to primary output \circ e.g. $(v_1, v_2) (v_2, v_3) ... (v_{n-1}, v_n)$ ○v₁ is transitive fan-in ○v_n is transitive fan-out e NAND primary output **NAND** fan-out **NAND** fan-in primary input puting Architecture Lab. Hajime Shimada Hardware Design I (Chap. 2) 19



The algorithm of value allocation

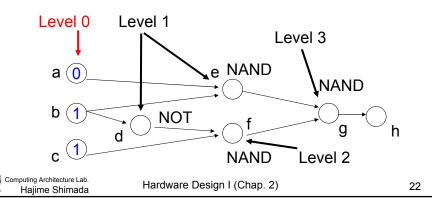
- Define the value of primary inputs
 - Primary inputs are called level 0 vertices
- Define the value of level 1 vertices
 - Level 1 vertices: all inputs of them are primary input
 - All inputs value are already defined in 1.
- 3. Define the value of level 2 vertices
 - Level 2 vertices: all inputs of them are less than level 1 (level 0 or 1)
- Define level n vertices until the all of the vertices have defined
 - Level n vertices: all inputs of them are less than level n-1

Hardware Design I (Chap. 2)

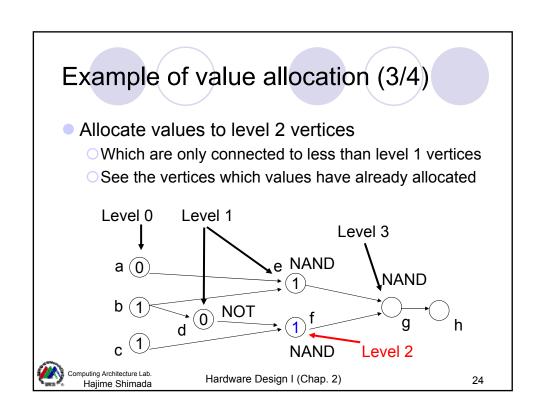
21

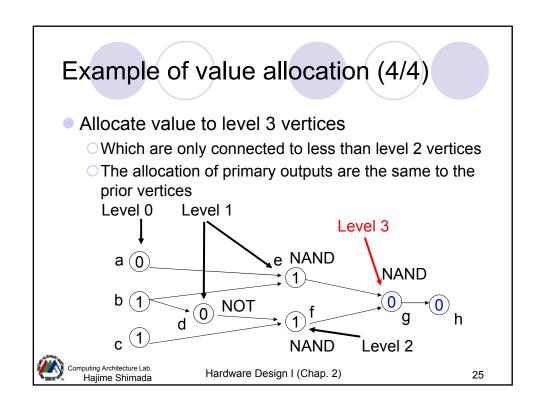
Example of value allocation (1/4)

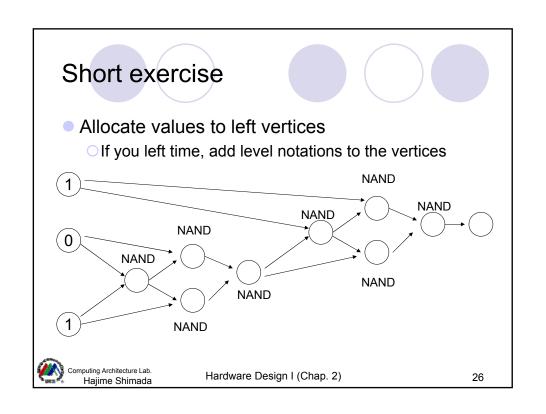
- Allocate value to primary inputs (level 0 vertices)
 - We can allocate them without constraint
 - Ousually, they are given

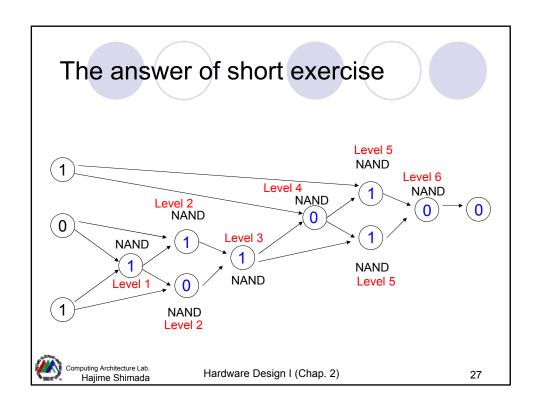


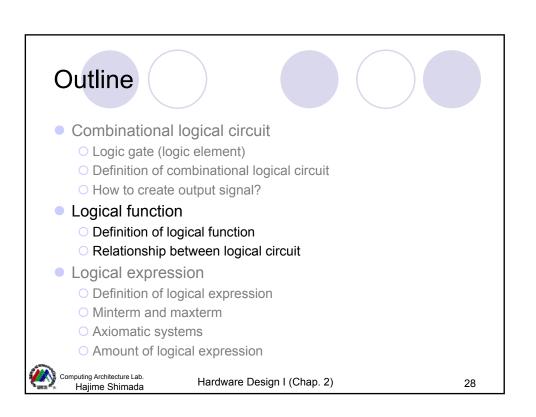
Example of value allocation (2/4) Allocate values to level 1 vertices OWhich are only connected to primary inputs Level 0 Level 1 Level 3 e NAND a (0 NAND NOT **(0)** Level 2 NAND puting Architecture Lab. Hajime Shimada Hardware Design I (Chap. 2) 23











Definition of logical function from mathematical viewpoint

- Representation of the relationship between input value and output value
- The definition of *n*-value logical function:

Projection from $\{0, 1\}^n$ to $\{0, 1\}$

- Subset $f \subseteq \{0, 1\}^n \times \{0, 1\}$ which does not include both $(X, 0) \in f$ and $(X, 1) \in f$ in arbitrary X
- We denote it y = f(X) if $(X, y) \in f$
- ○{0, 1}ⁿ is called domain
- ○{0, 1} is called codomain

Hardware Design I (Chap. 2)

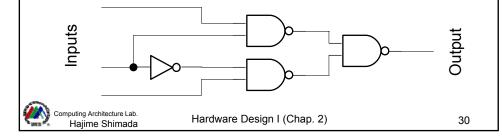
29

Example of definition of 3-value logical function (notated by logical circuit)

- It outputs 0 if we input (0, 0, 0) into it \(^\)
- It outputs 1 if we input (0, 0, 1) into it:

It outputs 1 if we input (1, 1, 1) into it

This is logical function!



Examples of definition of representative logical function

- The function of NOT $\subseteq \{0,1\} \times \{0,1\}$
 - \bigcirc {(0, 1), (1, 0)}
- The function of AND $\subseteq \{0,1\}^2 \times \{0,1\}$
 - \bigcirc {((0, 0), 0), ((0, 1), 0), ((1, 0), 0), ((1, 1), 1)}
- The function of AND $\subseteq \{0,1\}^2 \times \{0,1\}$
 - $\{((0,0),0),((0,1),1),((1,0),1),((1,1),1)\}$

Input Output

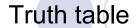
Hardware Design I (Chap. 2)

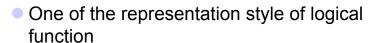
31

Hot to denote them in usual?

- Usually, we do not use mathematical definition
- We usually use following notations
 - Logical circuit
 - Truth table
 - Logical expression

Hardware Design I (Chap. 2)





- Aligning output values for all possible inputs
- The size of n values logical function is 2ⁿ

X ₁	<i>X</i> ₂	$f(x_1,x_2)$	$g(x_1,x_2)$	$h(x_1,x_2)$	_
0	0	0	0	h(0, 0)	If truth tables of two
0	1	0	1	<i>h</i> (0, 1)	functions are identical,
1	0	0	1	h(1, 0)	the functions are
1	1	1	0	h(1, 1)	identical

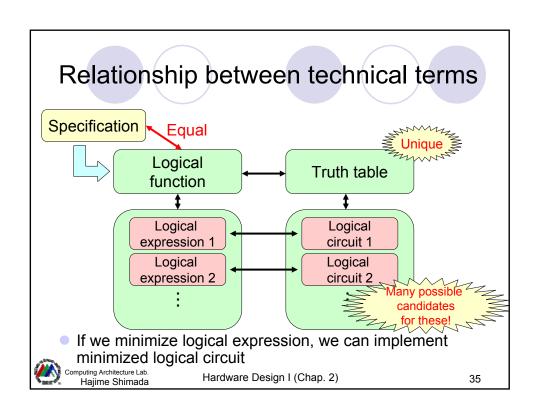
Truth table

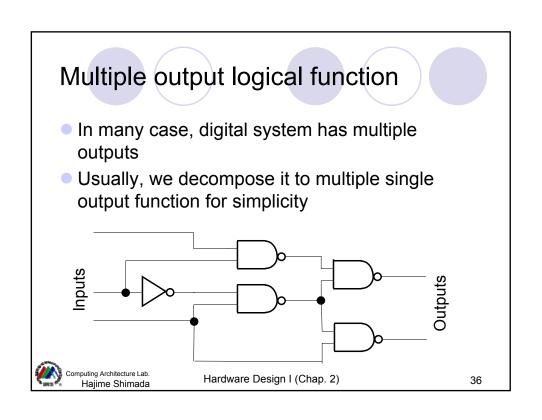
Hardware Design I (Chap. 2)

33

 Logical function represents the relationship of input value and output value in combinational logical circuit







Truth table of multiple output logical function

Projection from $\{0, 1\}^n$ to $\{0, 1\}^m$

OList of m projections from $\{0, 1\}^n$ to $\{0, 1\}$

<i>X</i> ₁ <i>X</i>	$f_0(z)$	(x_1, x_2)	$f_1(x_1,x_2)$
0 ()	0	0
0 1	1	0	1
1 ()	0	1
1 1	1	1	0

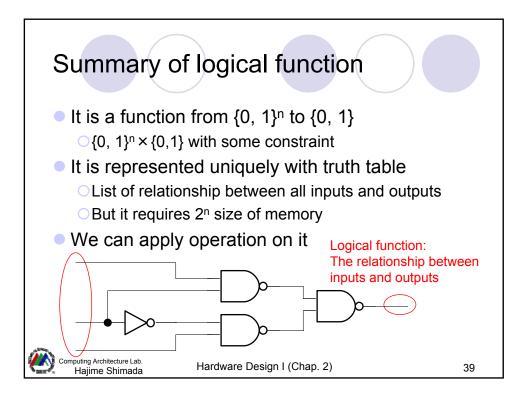
Hardware Design I (Chap. 2)

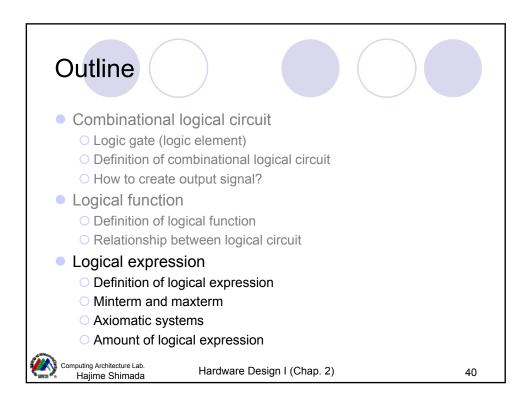
37

Operation between logical functions

- We can extend operation on logical value to logical function
 - \bigcirc $(f \cdot g) (x_1, x_2, ..., x_n) = f(x_1, ..., x_n) \cdot g(x_1, ..., x_n)$
 - $\bigcirc (f+g)(x_1, x_2, ..., x_n) = f(x_1, ..., x_n) + g(x_1, ..., x_n)$
 - $\bigcirc (f') (x_1, x_2, ..., x_n) = f(x_1, x_2, ..., x_n)'$
- Detail is taught in following logical expression section

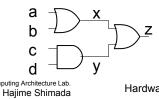
Hardware Design I (Chap. 2)

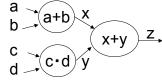




Logical expression

- Represent it with arrangement of variable which denotes logical function
- e.g. x + y•z + x•y'•z'
- Efficient than truth table
- But there's no uniqueness
- x = a+b; y = c+d; z = x+y -> z = (a+b) + (c+d)





Hardware Design I (Chap. 2)

41

The definition of logical expression

- 1. Logical variables are logical expression
 - e.g. x, y, z, x₁, x₂, a, b, ...
- If E₁ and E₂ are logical expression,
 (E₁•E₂), (E₁+E₂), (E₁') are logical expression
 e.g. (x•y), (x+y), (x+(y•z)), (x+(y'))
- Generated in recursively
- We can omit brackets by adding order to operations
 - Order: ', •, and +

Hardware Design I (Chap. 2)

The expression of logical function with logical expression (1/2)

- Pay attention to the logical function which has only one "1" output in truth table
 - Called minterm
 - Minterm can be represented by AND and NOT

Minterm											
V V	ابر ا	χ'•γ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	v-v							
ху	x'·y'	x · y	x·y'	x·y							
0 0	1	0	0	0							
0 1	0	1	0	0							
10	0	0	1	0							
1 1	0	0	0	1							
ation Lab											

Computing Architecture Lab.
Hajime Shimada

Hardware Design I (Chap. 2)

43

The expression of logical function with logical expression (2/2)

- The logical function which has multiple "1" output is represented by OR of minterms
- The arbitrary function can be represented with AND, OR, and NOT of logical variable

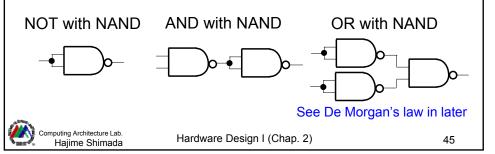
			Minte	erm		
		ر. ب. ا	٠, ,,	ر		f ()
_	ху	x'·y'	x'·y	x·y'	x.A	$f(x,y) = x' \cdot y + x \cdot y'$
	0 0	1	0	0	0	0
	0 1	0	1	0	0	1
	1 0	0	0	1	0	1
	11	0	0	0	1	0

Computing Architecture Lab.
Hajime Shimada

Hardware Design I (Chap. 2)

Notation only 2-input NAND or NOR

- We can represent NOT, AND, and OR with NAND gates by following wire connection
 - OCalled "NAND has functional completeness"
- Similar representation can be done with only NOR gates



Sum of products

- Definition
 - Literal: Logical value or the negation of logical value
 - a: positive literal
 - a': negative literal
 - 1. Create term with AND of literals
 - 2. Create logical expression with OR of 1.
- e.g. abc + a'b'c + ac, ac + bc + ad'e
- Other names: AND-OR type, two level logic
- The sum of minterms has special name
 - ->Disjunctive Normal Form (DNF)

Hardware Design I (Chap. 2)

Disjunctive Normal Form (DNF)

OArbitrary logical function can be expressed with DNF

	1	1					- 1				
a b		f	g		a	b	С		h	S	t_
0 0	a'b'	0	1		0	0	0	a'b'c'	0	0	1
0 1	a'b	1	0		0	0	1	a'b'c	1	1	1
1 0	ab'	1	0		0	1	0	a'bc'	0	0	0
1 1	ab	0	1		0	1	1	a'bc	1	1	0
					1	0	0	ab'c'	0	0	0
f =	a'b +	ab	,		1	0	1	ab'c	1	1	0
	a'b' -				1	1	0	abc'	1	0	1
9	uБ	· ac	,		1	1	1	abc	0	1	1
				h	= a	'n	c'	+ a'bc	+ ;	ab'd	: + a

h = a'b'c' + a'bc' + ab'c + abc' s = a'b'c + a'bc + ab'c + abc t = a'b'c' + a'b'c + abc' + abcHardware Design I (Chap. 2)

Lab. ada

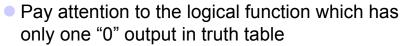
Computing Architecture Lab. Hajime Shimada

47

Product of sums

- 1. Create term with OR of literals
- 2. Create logical expression with AND of 1.
- e.g. (a+b'+c) (a'+b+c)(d+e')
- There's a counterpart notation of DNF
 - ->Conjunctive Normal Form (CNF)
 - Sum of maxterms
 - Maxterm: the logical function which has only one "0" output in truth table

Hardware Design I (Chap. 2)



- Called maxterm
- OMaxterm can be represented by OR and NOT

Maxterm

	•			,	
ху	х+у	x+y'	x'+y	x'+y'	f(x,y) = (x+y)(x'+y')
0 0	0	1	1	1	0
0 1	1	0	1	1	1
10	1	1	0	1	1
11	1	1	1	0	0
		1			

Computing Architecture Lab.
Hajime Shimada

Hardware Design I (Chap. 2)

40

Conjunctive Normal Form (CNF)

- Sum of maxterms without same maxterm
 - OArbitrary logical function can be expressed with CNF

a b		f	g	a	b	С		h	s	_t_
0 0	a'b'	0	1	0	0	0	a'b'c'	0	0	1
0 1	a'b	1	0	0	0	1	a'b'c	1	1	1
1 0	ab'	1	0	0	1	0	a'bc'	0	0	0
1 1	ab	0	1	0	1	1	a'bc	1	1	0
	1			1	0	0	ab'c'	0	0	0
$f = \ell$	a'+b')	′a+k)	1	0	1	ab'c	1	1	0
•		•	•	1	1	0	abc'	1	0	1
g – (a'+b)(a+D)	1	1	1	abc	0	1	1
						- 1				

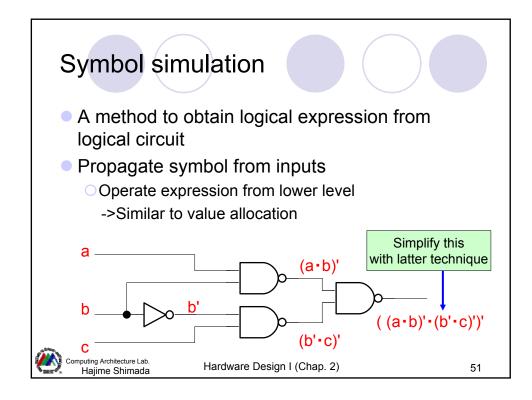
h = (a+b+c)(a+b'+c)(a'+b+c)(a'+b'+c')

s = (a+b+c)(a+b'+c)(a'+b+c)(a'+b'+c)

t = (a+b'+c)(a+b'+c')(a'+b+c)(a'+b+c')

Computing Architecture Lab.
Hajime Shimada

Hardware Design I (Chap. 2)



Simplify with operation on Boolean algebra

- The logical expression given from symbol simulation has complexity
 - e.g. ((a•b)'•(b'•c)')'
- How to simplify them?

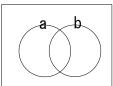
- Simplify with operation on Boolean algebra
 - General operation rule
 - ODe Morgan's law
 - Shannon's expansion

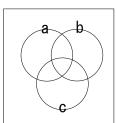
Hardware Design I (Chap. 2)

Axiomatic systems related simplification on Boolean algebra

- General operation rules
 - Oldempotent: a+a = a
 - Commutativity: a+b = b+a
 - Associatively: (a+b)+c = a+(b+c)
 - ○Absorption: a+(a•b) = a
 - Object Distributive: (a+b)·c = a·c+b·c
 - Involution: (a')' = a
 - Complements: a+a' = 1
 - Oldentity: a · 1 = a
 - ODomination: a 0 = 0

Venn diagram





Axiomatic systems related simplification on Boolean algebra

- Duality
 - ○The rule that exchanged "+ and " and "0 and 1" will be approved (Dual rule)
 - oe.g. a+a = a ← a•a = a
 - \bigcirc e.g. $a+a'=1 \longleftrightarrow a\cdot a'=0$
- We can insert arbitrary logical expressions into a, b, and c in prior equations

Hardware Design I (Chap. 2)

Review: 2-input logical operation

- AND, OR, NAND, and NOR: described before
- XOR: output 1 if the inputs are not equal
- XNOR: output 1 if the inputs are equal

		AND	OR	NAND	NOR	XOR	XNOR
Χ	y	х·у	х+у	(x·y)'	(x+y)'	x⊕y	(x ⊕ y)'
0	0	0	0	1	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	1	0	0	0	1
						l	l

Hardware Design I (Chap. 2)

5

De Morgan's law

- $(x \cdot y)' = x' + y'$
- $(x+y)' = x' \cdot y'$
- We can insert arbitrary logical expressions into x and y

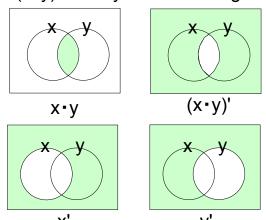
		Equ	Jai	Equal					
Χ	у	(x·y)'	x'+y'	(x+y)'	x'·y'				
0	0	1	1	1	1				
0	1	1	1	0	0				
1	0	1	1	0	0				
1	1	0	0	0	0				
	•		J						

Computing Architecture Lab. Hajime Shimada

Hardware Design I (Chap. 2)

De Morgan's law on Venn diagram

Here's (x•y)' = x'+y' on Venn diagram



Computing Architecture Lab. Hajime Shimada

Hardware Design I (Chap. 2)

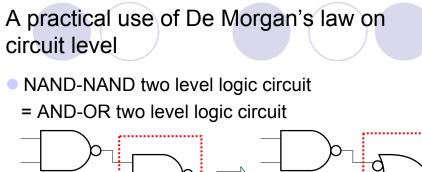
57

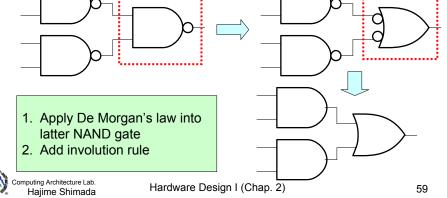
De Morgan's law on circuit level

- NAND and NOR becomes AND and OR with negated inputs

Computing Architecture Lab. Hajime Shimada

Hardware Design I (Chap. 2)





Generalized De Morgan's law

$$F'(x_1, x_2, \dots, x_n) = G(x_1, x_2, \dots, x_n)$$

Under
$$Xi \leftrightarrow Xi'$$
 $+ \leftrightarrow \cdot$

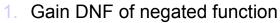
 Widely used when you want to negate arbitrary logical function f

e.g.
$$(a'b'+a'b+ab')' = (a+b)(a+b')(a'+b)$$

= aaa'+aab+ab'a'+ab'b+baa'+bab+bb'a'+bb'b
= ab + ab = ab
e.g. $((a \cdot b)' \cdot (b' \cdot c)')' = (a \cdot b) + (b' \cdot c) = a \cdot b + b' \cdot c$

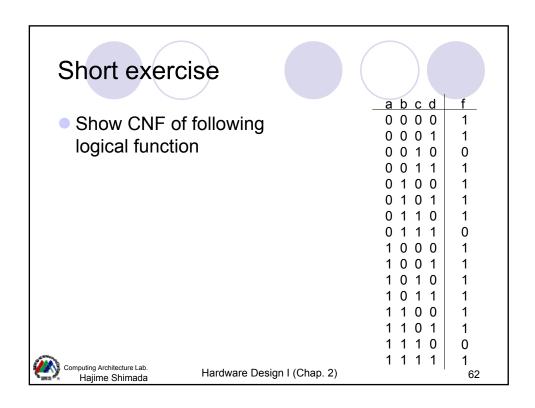
Hardware Design I (Chap. 2)

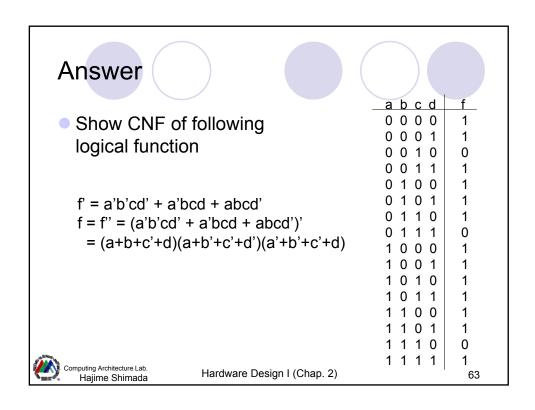
How to create CNF?

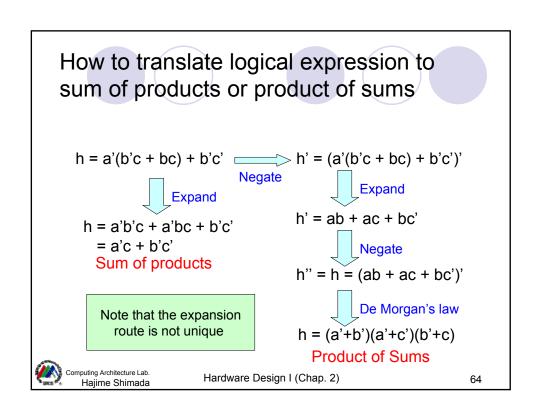


- Sum of "0" term in truth table
- Negate function obtained in 1.

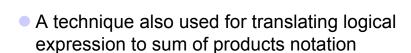
	а	b	С		h	s	t	
		0	0	a'b'c'	0	0	1	h' = a'b'c' + a'bc' + ab'c' + abc
	0	0	1	a'b'c	1	1	1	
	0	1	0	a'bc'	0	0	0	
	0	1	1	a'bc	1	1	0	h'' = (a'b'c' + a'bc' + ab'c' + abc)'
	1	0	0	ab'c'	0	0	0	ii = (a b c + a b c + ab c + ab c)
	1	0	1	ab'c	1	1	0	De Morgan's law
	1	1	0	abc'	1	0	1	
	1	1	1	abc	0	1	1	h = (a+b+c)(a+b'+c)
								(a'+b+c)(a'+b'+c')
Coi	mputing Haii			ure Lab. mada		На	ırdwa	are Design I (Chap. 2) 61







Shannon's expansion



$$f(x_1, x_2, \dots, x_n) = x_1' \cdot f(0, x_2, \dots, x_n) + x_1 \cdot f(1, x_2, \dots, x_n)$$

e.g.
$$(a'b'+a'b+ab')'$$

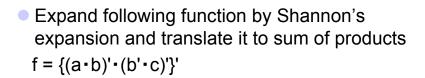
= $a'((1 \cdot b'+1 \cdot b+0 \cdot b')')+a((0 \cdot b+0 \cdot b+1 \cdot b')')$
Substitute $a=0$
= $a'((\underline{b'+b})')+a((b')')$
=1
= $a'(0)+a(b'') = ab$

Computing Architecture Lab. Hajime Shimada

Hardware Design I (Chap. 2)

65

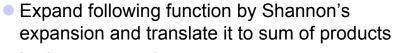
Short exercise



Computing Architecture Lab. Hajime Shimada

Hardware Design I (Chap. 2)

Answer



$$f = \{(a \cdot b)' \cdot (b' \cdot c)'\}'$$

$$f = a' \cdot \{(\underline{0 \cdot b})' \cdot (b' \cdot c)'\}' + a \cdot \{(\underline{1 \cdot b})' \cdot (b' \cdot c)'\}'$$

$$= a' \cdot \{(b' \cdot c)'\}' + a \cdot \{b' \cdot (b' \cdot c)'\}'$$

$$= b' \cdot [a' \cdot \{(\underline{1 \cdot c})'\}' + a \cdot \{\underline{1 \cdot (1 \cdot c)'}\}'] + b \cdot [a' \cdot \{(\underline{0 \cdot c})'\}' + a \cdot \{\underline{0 \cdot (0 \cdot c)'}\}'$$

$$= c \qquad = c \qquad = 0$$

$$= b' \cdot (a' \cdot c + a \cdot c) + b \cdot a$$

$$= \underline{(a' + a)} \cdot b' \cdot c + a \cdot b = a \cdot b + b' \cdot c$$

Computing Architecture Lab.
Hajime Shimada

Hardware Design I (Chap. 2)

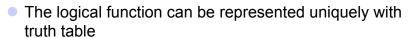
67

Equivalence of logical function

- There are equivalent logical expression in each logical function
 - In logical circuits design, there's possibility that it includes same circuits (= same logical expression)
 - -> Redundant! (consume unnecessary silicon resources)
- How to check equivalence of them?
 - Ohecking on truth table is one method
 - The size of truth table is 2ⁿ on n-value
 - Cogitated algorithm or data structure are required

-> Later Chap. 2

Hardware Design I (Chap. 2)



 But there are 2^{2ⁿ} of logical functions in n-value logical function

func	1	n	_) () ()) ()	Q ? ? ?			Th	ere	e a	re	2 ⁴	pc	ss	ible	out	puts	3
_ x y						'													_	
0 0)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1			
0 1		0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1			
1 0)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1			
1 1		0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1			
Computing Ar Hajim						Ha	ardw	/are	De	sign	I (C	Chap). 2)	1						6

Examples of 2-input logical function

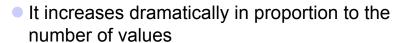
- There's possible functions which are not named
- But usually, there's no use

		AND	XOR				
Χ	y	х•у	x⊕y	(= x)	(= 0)	(= y)	(= 1)
0	0	0	0	1	0	0	1
0	1	0	1	0	0	1	1
1	0	0	1	1	0	0	1
1	1	1	0	0	0	1	1

Computing Architecture Lab. Hajime Shimada

Hardware Design I (Chap. 2)

Quantity of logical function



- \bigcirc 28 = 256 in 3-value function
- \bigcirc 2¹⁶ = 65536 in 4-value function
- 2³² = 4294967296 in 5-value function
- \bigcirc 2⁶⁴ (\rightleftharpoons 1.8 × 10¹⁹) in 6-value function
 - Too hard to check all of them even if we use computer!
- Let's consider how to reduce number of logical functions

Hardware Design I (Chap. 2)

71

Symmetry logical function

The logical function is symmetry on x_i and x_j if outputs do not change under permutation of x_i and x_j

Example of symmetry: $f(x_1, x_2) = x_1 + x_2$ (= $x_2 + x_1$) Example of not symmetry: $f(x_1, x_2) = x_1' + x_2$ ($\neq x_2' + x_1$)

- Quantity of logical function becomes 2ⁿ⁺¹ if the function has perfect symmetry
 - The outputs do not change under permutation of all variables
 - \circ e.g. $x'_1 \cdot x_2 \cdot x_3 + x_1 \cdot x'_2 \cdot x_3 + x_1 \cdot x_2 \cdot x'_3$

Hardware Design I (Chap. 2)