Hardware Design I Chap. 2 Basis of logical circuit, logical expression, and logical function
 Computing Architecture Lab. Hajime Shimada
 E-mail: shimada@is.naist.jp

Outline

- Combinational logical circuit

> Logic gate (logic element)

Definition of combinational logical circuit
How to create output signal?

- Logical function
- Definition of logical function
- Relationship between logical circuit
- Logical expression
- Definition of logical expression

Minterm and maxterm

- Axiomatic systems
- Amount of logical expression

Review: outlined flow of LSI design

Define specification

- Definition in hardware description language

Architectural design
\square Logic synthesis

- Circuit with basic logic gates

Logical design

Mask pattern
This chapter treats
Place and route this area

- Logical function
-Logical expression
Physical design
Manufacturing

Relationship between technical terms

Specification

- If we minimize logical expression, we can implement minimized logical circuit

Detailed talk of logical design

Specification of sequential machine \rightarrow Chap. 6亿

- Specification of logical function -> later Chap. 2』Logical expression $->$ later Chap. 2
-Simplify of two level logic \rightarrow Chap. 3 and 7 -Simplify of multi level logic \rightarrow Chap. 7 and 8
- Simplified logical expression
= Basic logic gates
Computing Architecture Lab.

Logic gate (logic element)

The electric circuit witch outputs result of logical operation
e.g. NOT, NAND

Both inputs and outputs can only take 0 or 1

NOT gate

Circuit symbol -

Computing Architecture Lab.

NOT, AND, and OR on Boolean algebra

Logical circuit operates on Boolean algebra
Here's basic logic from Boolean algebra

NOT		AND		OR	
		x y	Q	x y	Q
x	Q	00	0	00	0
0	1	01	0	01	1
1	0	11 11 \times	0	10 1 1	
		$\frac{x}{v}$	Q	$\frac{x}{v}-$	

NOT, AND, and OR on Venn diagram

In some case, imaging Venn diagram helps understanding

NOT: left area
AND: shared area
OR: sum of area

Computing Architecture Lab.

NAND and NOR on Boolean algebra

- Physical implementation is easy

Usually, AND and OR are implemented by combining NOT and NAND/NOR

Computing Architecture Lab. Hajime Shimada

Hardware Design I (Chap. 2)

Combinational logical circuit

The signal flow must be contra flow
The output of the gate will be defined from input side
The output is defined with current input
No loop in it

Let's assume looped logic circuit (1/2)

- It sometimes gives unstable output

Let's assume 1 is inputted under 0 output status

Let's assume 1 is inputted under 1 output status

The output switches $0 / 1$ forever!!! ->oscillator

Let's assume looped logic circuit (2/2)

We rarely achieve stable circuit with looped combinational circuit

Let's assume 1 is inputted under 1 output status

- It continues to output 1

Usually, they are rare and utilization is limited..

Computing Architecture Lab.

How to crate loop? -> Sequential circuit (Chap. 6)

Definition of combinational logic with directed graph

- Set of vertices: $V=\{a, b, c, d, e, f, g, h\}$
- Set of edges: $E \subseteq(V \times V)$

$$
E=\{(\mathrm{a}, \mathrm{e}),(\mathrm{b}, \mathrm{e}),(\mathrm{b}, \mathrm{~d}),(\mathrm{c}, \mathrm{f}),(\mathrm{d}, \mathrm{f}),(\mathrm{e}, \mathrm{~g}),(\mathrm{f}, \mathrm{~g}),(\mathrm{g}, \mathrm{~h})\}
$$

- Label of vertex:NOT, NAND, and so on

If you felt "what is directed graph?" ...

- Please relearn "graph theory"

The sets of vertices and edges
e.g. network connection graph, schematic diagram, ...

Specific graph: tree, directed graph, weighted graph, ...

- It is widely used in informatics world

Syntax tree (compiler)
Markov chain (voice recognition)
Perceptron (neural network)

About technical terms of set theory

Set
Gathered set of elements
e.g. $\{0,1\},\{a, b, \ldots, z\}, \ldots$

- Cartesian product

A set of ordered pairs of elements
Notation: $A \times B(A, B$: set $)$
e.g. $\{0,1\} \times\{a, b\}=\{(0, a),(0, b),(1, a),(1, b)\}$

Other notation: $\mathrm{V}^{2},\{0,1\}^{2}$

The syntax of combinational logic from graph theory

- Directed Acyclic Graph (DAG): (V, E)

V : set of vertices
E : set of edges, subset of $(\mathrm{V} \times \mathrm{V})$
($\mathrm{V} \times \mathrm{V}$) denotes set of Cartesian product
Allocate logic gate (e.g. NAND) label to vertices
Allocate 1 label to 1 vertex

Terms of combinational logic (1/3)

Fan-in: a input side of edge
e.g. v_{1} is the fan-in of edge $\left(v_{1}, v_{2}\right)$

Viewpoint from the v_{2} side

- Fan-out: a output side of edge $\left(v_{1}, v_{2}\right)$
e.g. v_{2} is the fan-out of edge $\left(v_{1}, v_{2}\right)$

Computing Architecture Lab.
Hajime Shimada

Terms of combinational logic (2/3)

- Primary input: a vertex which does not have fanin

Primary output: a vertex which does not have fan-out

Terms of combinational logic (3/3)

Path: a set of edges from primary input to primary output
e.g. $\left(v_{1}, v_{2}\right)\left(v_{2}, v_{3}\right) \ldots\left(v_{n-1}, v_{n}\right)$
v_{1} is transitive fan-in
v_{n} is transitive fan-out

Computing Architecture Lab.
Hajime Shimada

Value allocation to logic circuit

Value allocation
Allocate $0 / 1$ value to (output of) each vertex
Adequate allocation: satisfies the truth of gate
The allocation will be defined if all of primary input has defined
It is also called logic simulation

Adequate allocation

(
$\mathrm{b}(1) \longrightarrow$ (0) $\xrightarrow{\text { NOT }}$

The algorithm of value allocation

1. Define the value of primary inputs

Primary inputs are called level 0 vertices
2. Define the value of level 1 vertices

- Level 1 vertices: all inputs of them are primary input
- All inputs value are already defined in 1.

3. Define the value of level 2 vertices

- Level 2 vertices: all inputs of them are less than level 1 (level 0 or 1)

4. Define level n vertices until the all of the vertices have defined
Level n vertices: all inputs of them are less than level $n-1$

Example of value allocation (1/4)

- Allocate value to primary inputs (level 0 vertices)

We can allocate them without constraint
Usually, they are given

Example of value allocation (2/4)

Allocate values to level 1 vertices
Which are only connected to primary inputs

Computing Architecture Lab.

Example of value allocation (3/4)

- Allocate values to level 2 vertices

Which are only connected to less than level 1 vertices
See the vertices which values have already allocated

Example of value allocation (4/4)

Allocate value to level 3 vertices
Which are only connected to less than level 2 vertices
The allocation of primary outputs are the same to the prior vertices
Level 0 Level 1

Short exercise

Allocate values to left vertices
If you left time, add level notations to the vertices

The answer of short exercise

Outline

Combinational logical circuit

- Logic gate (logic element)

Definition of combinational logical circuit
How to create output signal?
Logical function
Definition of logical function
Relationship between logical circuit
Logical expression
Definition of logical expression

- Minterm and maxterm
- Axiomatic systems

Amount of logical expression

Definition of logical function from mathematical viewpoint

- Representation of the relationship between input value and output value
- The definition of n-value logical function:

Projection from $\{0,1\}^{\mathrm{n}}$ to $\{0,1\}$
Subset $\mathrm{f} \subseteq\{0,1\}^{\mathrm{n}} \times\{0,1\}$ which does not include both $(X, 0) \in f$ and $(X, 1) \in f$ in arbitrary X
We denote it $y=f(X)$ if $(X, y) \in f$
$\{0,1\}^{\mathrm{n}}$ is called domain
$\{0,1\}$ is called codomain

Example of definition of 3-value logical function (notated by logical circuit)

- It outputs 0 if we input $(0,0,0)$ into it
- It outputs 1 if we input $(0,0,1)$ into it

This is logical function!

- It outputs 1 if we input $(1,1,1)$ into it

Examples of definition of representative logical function

- The function of NOT $\subseteq\{0,1\} \times\{0,1\}$

$$
\{(0,1),(1,0)\}
$$

The function of AND $\subseteq\{0,1\}^{2} \times\{0,1\}$

$$
\{((0,0), 0),((0,1), 0),((1,0), 0),((1,1), 1)\}
$$

- The function of AND $\subseteq\{0,1\}^{2} \times\{0,1\}$

$$
\{((0,0), 0),((0,1), 1),((1,0), 1),((\underbrace{1,1)}_{\text {Input Output }}, \underbrace{1})\}
$$

Hot to denote them in usual?

- Usually, we do not use mathematical definition
- We usually use following notations

Logical circuit
Truth table
Logical expression

Truth table

- One of the representation style of logical function
Aligning output values for all possible inputs
- The size of n values logical function is 2^{n}

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$	$g\left(x_{1}, x_{2}\right)$	$h\left(x_{1}, x_{2}\right)$	
0	0	0	0	$h(0,0)$	li truth tables of two
0	1	0	1	$h(0,1)$	functions are identical,
1	0	0	1	$h(1,0)$	the functions are
1	1	1	0	$h(1,1)$	identical

Logical function $\xrightarrow[\text { relationship }]{\text { One for one }}$ Truth table

Relationship between logical function and logical circuit

Logical function represents the relationship of input value and output value in combinational logical circuit

Relationship between technical terms

If we minimize logical expression, we can implement minimized logical circuit
Computing Architecture Lab.

Multiple output logical function

In many case, digital system has multiple outputs

- Usually, we decompose it to multiple single output function for simplicity

Truth table of multiple output logical function

Multiple output function (m outputs):
Projection from $\{0,1\}^{\mathrm{n}}$ to $\{0,1\}^{\mathrm{m}}$
List of m projections from $\{0,1\}^{\text {n }}$ to $\{0,1\}$

x_{1}	x_{2}	$f_{0}\left(x_{1}, x_{2}\right)$	$f_{1}\left(x_{1}, x_{2}\right)$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Operation between logical functions

We can extend operation on logical value to logical function

$$
\begin{aligned}
& (f \cdot g)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right) \cdot g\left(x_{1}, \ldots, x_{n}\right) \\
& (f+g)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)+g\left(x_{1}, \ldots, x_{n}\right) \\
& \left(f^{\prime}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

Detail is taught in following logical expression section

Summary of logical function

- It is a function from $\{0,1\}^{n}$ to $\{0,1\}$
$\{0,1\}^{n} \times\{0,1\}$ with some constraint
- It is represented uniquely with truth table

List of relationship between all inputs and outputs
But it requires 2^{n} size of memory

- We can apply operation on it

Logical function:
 The relationship between inputs and outputs

Outline

Combinational logical circuit

- Logic gate (logic element)

Definition of combinational logical circuit
How to create output signal?

- Logical function

Definition of logical function
Relationship between logical circuit

- Logical expression

Definition of logical expression
Minterm and maxterm
Axiomatic systems
Amount of logical expression

Logical expression

- One of the expression of logical function

Represent it with arrangement of variable which denotes logical function
e.g. $x+y \cdot z+x \cdot y^{\prime} \cdot z^{\prime}$

- Efficient than truth table
- But there's no uniqueness
$x=a+b ; y=c \cdot d ; z=x+y->z=(a+b)+(c \cdot d)$

Computing Architecture Lab. Hajime Shimada

The definition of logical expression

1. Logical variables are logical expression
e.g. $x, y, z, x_{1}, x_{2}, a, b, \ldots$
2. If E_{1} and E_{2} are logical expression, $\left(E_{1} \cdot E_{2}\right),\left(E_{1}+E_{2}\right),\left(E_{1}^{\prime}\right)$ are logical expression
e.g. ($x \cdot y$), ($x+y$), ($x+(y \cdot z)$), ($\left.x+\left(y^{\prime}\right)\right)$

- Generated in recursively
- We can omit brackets by adding order to operations

Order: ', •, and +

The expression of logical function with logical expression (1/2)

Pay attention to the logical function which has only one " 1 " output in truth table Called minterm

Minterm can be represented by AND and NOT

	Minterm			
$x y$	$x^{\prime} \cdot y^{\prime}$	$x^{\prime} \cdot y$	$x \cdot y^{\prime}$	$x \cdot y$
0	0	1	0	0
0	1	0	1	0
1	0	0	0	1
1	1	0	0	0
1	0			

The expression of logical function with logical expression (2/2)

The logical function which has multiple "1" output is represented by OR of minterms

- The arbitrary function can be represented with AND, OR, and NOT of logical variable

Minterm					
$\overbrace{}^{\text {a }}$					
$x \mathrm{y}$	$x^{\prime} \cdot y^{\prime}$	x'y	$x \cdot y^{\prime}$	$x \cdot y$	$f(x, y)=x^{\prime} \cdot y+x \cdot y^{\prime}$
00	1	0	0	0	0
01	0	1	0	0	1
10	0	0	1	0	1
11	0	0	0	1	0

Notation only 2-input NAND or NOR

- We can represent NOT, AND, and OR with NAND gates by following wire connection Called "NAND has functional completeness"
- Similar representation can be done with only NOR gates

Computing Architecture Lab.

Sum of products

Definition

Literal: Logical value or the negation of logical value

- a: positive literal
- a': negative literal

1. Create term with AND of literals
2. Create logical expression with OR of 1 .
e.g. $a b c+a ' b ' c+a c, a c+b c+a d ' e$

- Other names: AND-OR type, two level logic
- The sum of minterms has special name
->Disjunctive Normal Form (DNF)

Disjunctive Normal Form (DNF)

Sum of minterms without same minterm
Arbitrary logical function can be expressed with DNF

a	b		f	g
0	0	a'b'	0	1
0	1	a'b	1	0
1	0	$a b \prime$	1	0
1	1	$a b$	0	1

$f=a \prime b+a b \prime$
$g=a \prime b^{\prime}+a b$

a	b	c		h	s	t
0	0	0	$a^{\prime} b^{\prime} c^{\prime}$	0	0	1
0	0	1	$a^{\prime} b^{\prime} c$	1	1	1
0	1	0	a'bc'	0	0	0
0	1	1	a'bc	1	1	0
1	0	0	$a b ' c '$	0	0	0
1	0	1	$a b ' c$	1	1	0
1	1	0	$a b c$	1	0	1
1	1	1	$a b c$	0	1	1

$h=a \prime b{ }^{\prime} c+a{ }^{\prime} b c+a b^{\prime} c+a b c^{\prime}$
$s=a{ }^{\prime} b^{\prime} c+a \prime b c+a b \prime c+a b c$
$t=a \prime b \prime c \prime+a \prime b \prime c+a b c \prime+a b c$
Computing Architecture Lab.

Product of sums

Definition

Create term with OR of literals
Create logical expression with AND of 1.
e.g. $\left(a+b^{\prime}+c\right)\left(a^{\prime}+b+c\right)\left(d+e^{\prime}\right)$

- There's a counterpart notation of DNF
->Conjunctive Normal Form (CNF)

Sum of maxterms

Maxterm: the logical function which has only one " 0 " output in truth table

Maxterm

Pay attention to the logical function which has only one " 0 " output in truth table

Called maxterm
Maxterm can be represented by OR and NOT

Maxterm					$f(x, y)=(x+y)\left(x^{\prime}+y^{\prime}\right)$
$x \mathrm{y}$	x+y	x+y'	$\mathrm{x}^{\prime}+\mathrm{y}$	$\mathrm{x}^{\prime}+\mathrm{y}^{\prime}$	
00	0	1	1	1	0
01	1	0	1	1	1
10	1	1	0	1	1
11	1	1	1	0	0

Conjunctive Normal Form (CNF)

Sum of maxterms without same maxterm

Arbitrary logical function can be expressed with CNF

a	b		f	g
0	0	$\mathrm{a} \mathrm{b}^{\prime}$	0	1
0	1	$\mathrm{a} b$	1	0
1	0	$a b$	1	0
1	1	$a b$	0	1

$f=\left(a^{\prime}+b^{\prime}\right)(a+b)$
$g=\left(a^{\prime}+b\right)\left(a+b^{\prime}\right)$

a b c		h	S	t
000	a'b'c'	0	0	1
001	a'b'c	1	1	1
010	a'bc'	0	0	0
011	a'bc	1	1	0
100	ab'c'	0	0	0
101	ab'c	1	1	0
110	abc'	1	0	1
111	abc	0	1	1

$$
\begin{aligned}
& h=(a+b+c)\left(a+b^{\prime}+c\right)\left(a^{\prime}+b+c\right)\left(a^{\prime}+b^{\prime}+c^{\prime}\right) \\
& s=(a+b+c)\left(a+b^{\prime}+c\right)\left(a^{\prime}+b+c\right)\left(a^{\prime}+b^{\prime}+c\right) \\
& t=\left(a+b^{\prime}+c\right)\left(a+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a^{\prime}+b+c^{\prime}\right)
\end{aligned}
$$

Symbol simulation

A method to obtain logical expression from logical circuit

- Propagate symbol from inputs

Operate expression from lower level
->Similar to value allocation

Computing Architecture Lab
Hajime Shimada

Simplify with operation on Boolean algebra

- The logical expression given from symbol simulation has complexity

$$
\text { e.g. } \left.\left((a \cdot b)^{\prime} \cdot\left(b^{\prime} \cdot c\right)^{\prime}\right)\right)^{\prime}
$$

- How to simplify them?

Simplify with operation on Boolean algebra
General operation rule
De Morgan's law
Shannon's expansion

Axiomatic systems related simplification on Boolean algebra

General operation rules
Idempotent: $\mathrm{a}+\mathrm{a}=\mathrm{a}$
Commutativity: $a+b=b+a$
Associatively: $(a+b)+c=a+(b+c)$
Absorption: $a+(a \cdot b)=a$
Distributive: $(a+b) \cdot c=a \cdot c+b \cdot c$
Involution: (a')' = a
Complements: $a+a^{\prime}=1$
Identity: a•1 = a
Domination: a•0 = 0
Venn diagram

De Morgan's law: $(\mathrm{a}+\mathrm{b})^{\prime}=\mathrm{a}^{\prime} \cdot \mathrm{b}^{\prime}$

Axiomatic systems related simplification on Boolean algebra

Duality

The rule that exchanged "+ and \cdot " and " 0 and 1 " will be approved (Dual rule)
e.g. $\mathrm{a}+\mathrm{a}=\mathrm{a} \longleftrightarrow \mathrm{a} \cdot \mathrm{a}=\mathrm{a}$
e.g. $a+a^{\prime}=1 \longleftrightarrow a \cdot a '=0$

- We can insert arbitrary logical expressions into a, b , and c in prior equations

Review: 2-input logical operation

AND, OR, NAND, and NOR: described before
XOR: output 1 if the inputs are not equal
XNOR: output 1 if the inputs are equal

x	y	AND $\mathrm{x} \cdot \mathrm{y}$	OR $\mathrm{x}+\mathrm{y}$	NAND $(\mathrm{x} \cdot \mathrm{y})^{\prime}$	NOR $(\mathrm{x}+\mathrm{y})^{\prime}$	XOR $\mathrm{x} \oplus \mathrm{y}$	XNOR $(\mathrm{x} \oplus \mathrm{y})^{\prime}$
0	0	0	0	1	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	1	0	0	0	1

De Morgan's law

- $(x \cdot y)^{\prime}=x^{\prime}+y^{\prime}$
- $(x+y)^{\prime}=x^{\prime} \cdot y^{\prime}$
- We can insert arbitrary logical expressions into x and y

	Equal $\widehat{\widehat{s}}$		Equal	
x y	$(x \cdot y)^{\prime}$	$\mathrm{x}^{\prime}+\mathrm{y}^{\prime}$	($\mathrm{x}+\mathrm{y}$)	$x^{\prime} \cdot y^{\prime}$
00	1	1	1	1
01	1	1	0	0
10	1	1	0	0
11	0	0	0	0

De Morgan's law on Venn diagram

- Here's $(x \cdot y)^{\prime}=x^{\prime}+y^{\prime}$ on Venn diagram

De Morgan's law on circuit level

- NAND and NOR becomes AND and OR with negated inputs
- $(x \cdot y)^{\prime}=x^{\prime}+y^{\prime}$

- $(x+y)^{\prime}=x^{\prime} \cdot y^{\prime}$

A practical use of De Morgan's law on circuit level

NAND-NAND two level logic circuit
= AND-OR two level logic circuit

Generalized De Morgan’s law

$$
F^{\prime}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=G\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

$$
\text { Under } \quad X i \leftrightarrow X i i^{\prime}
$$

$$
+\leftrightarrow .
$$

Widely used when you want to negate arbitrary logical function f

$$
\text { e.g. }\left(a^{\prime} b^{\prime}+a^{\prime} b+a b^{\prime}\right)^{\prime}=(a+b)\left(a+b^{\prime}\right)\left(a^{\prime}+b\right)
$$

= aaa'+aab+ab'a'+ab'b+baa'+bab+bb'a'+bb'b

$$
=a b+a b=a b
$$

e.g. $\left((a \cdot b)^{\prime} \cdot\left(b^{\prime} \cdot c\right)^{\prime}\right)^{\prime}=(a \cdot b)+\left(b^{\prime} \cdot c\right)=a \cdot b+b^{\prime} \cdot c$

How to create CNF?

Gain DNF of negated function

Sum of "0" term in truth table

Negate function obtained in 1.

Computing Architecture Lab.

Short exercise

Show CNF of following logical function

How to translate logical expression to sum of products or product of sums

Shannon's expansion

A technique also used for translating logical expression to sum of products notation

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1} \cdot f\left(0, x_{2}, \cdots, x_{n}\right)+x_{1} \cdot f\left(1, x_{2}, \cdots, x_{n}\right)
$$

e.g. (a'b' $\left.+a^{\prime} b+a b^{\prime}\right)^{\prime}$

$$
\begin{aligned}
& =a^{\prime}\left(\frac{\left.\left(1 \cdot b^{\prime}+1 \cdot b+0 \cdot b^{\prime}\right)^{\prime}\right)}{\text { Substitute a=0 }}+\frac{a\left(\left(0 \cdot b+0 \cdot b+1 \cdot b^{\prime}\right)^{\prime}\right)}{\text { Substitute } a=1}\right. \\
& =a^{\prime}\left(\frac{\left.\left(b^{\prime}+b\right)^{\prime}\right)+a\left(\left(b^{\prime}\right)^{\prime}\right)}{=1}\right. \\
& =a^{\prime}(0)+a\left(b^{\prime \prime}\right)=a b
\end{aligned}
$$

Short exercise

Expand following function by Shannon's expansion and translate it to sum of products $f=\left\{(a \cdot b)^{\prime} \cdot(b ' \cdot c)^{\prime}\right\}^{\prime}$

```
Answer
- Expand following function by Shannon's
    expansion and translate it to sum of products
    \(\mathrm{f}=\left\{(\mathrm{a} \cdot \mathrm{b})^{\prime} \cdot(\mathrm{b} \cdot \cdot \mathrm{c})^{\prime}\right\}^{\prime}\)
\(\left.f=a^{\prime} \cdot\left\{\frac{(0 \cdot b)^{\prime}}{=1} \cdot(b \cdot \cdot c)^{\prime}\right\}^{\prime}+a \cdot \frac{(1 \cdot b)^{\prime}}{=b^{\prime}} \cdot\left(b^{\prime} \cdot c\right)^{\prime}\right\}^{\prime}\)
\(=a^{\prime} \cdot\left\{\left(b^{\prime} \cdot c\right)^{\prime}\right\}^{\prime}+a \cdot\left\{b^{\prime} \cdot\left(b^{\prime} \cdot c\right)^{\prime}\right\}^{\prime}\)
\(=b^{\prime} \cdot\left[a^{\prime} \cdot \frac{\left\{(1 \cdot c)^{\prime}\right\}^{\prime}}{=c}+a \cdot \frac{\left\{1 \cdot(1 \cdot c)^{\prime}\right\}^{\prime}}{=}\right]+b \cdot\left[a^{\prime} \cdot \frac{\{(0 \cdot c)\}^{\prime}}{=0}+\frac{a \cdot\{0 \cdot(0 \cdot c)\}^{\prime}}{=1}\right.\)
\(=b^{\prime} \cdot\left(a^{\prime} \cdot c+a \cdot c\right)+b \cdot a\)
\(=\left(a^{\prime}+a\right) \cdot b^{\prime} \cdot c+a \cdot b=a \cdot b+b^{\prime} \cdot c\)
    =1
```


Equivalence of logical function

There are equivalent logical expression in each logical function

In logical circuits design, there's possibility that it includes same circuits (= same logical expression)
-> Redundant! (consume unnecessary silicon resources)
How to check equivalence of them?
Checking on truth table is one method

- The size of truth table is 2^{n} on n-value

Cogitated algorithm or data structure are required

$$
\text { -> Later Chap. } 2
$$

Quantity of logical function

The logical function can be represented uniquely with truth table
But there are $2^{2^{n}}$ of logical functions in n-value logical function

\qquad
0100000111100001111
1000011001100110011
110101010101010101
Computing Architecture Lab.
Hajime Shimada

Examples of 2-input logical function

There's possible functions which are not named

- But usually, there's no use

		AND	XOR			
x	y	$\mathrm{x} \cdot \mathrm{y}$	$\mathrm{x} \oplus \mathrm{y}$	$(=\mathrm{x})$	$(=0)$	$(=\mathrm{y})$
0	0	0	0	1	0	0
0	1	0	1	0	0	1
1	0	0	1	1	0	0
1	1	1	0	0	0	1

Quantity of logical function

- It increases dramatically in proportion to the number of values
$2^{8}=256$ in 3-value function
$2^{16}=65536$ in 4-value function
$2^{32}=4294967296$ in 5 -value function
$2^{64}\left(\fallingdotseq 1.8 \times 10^{19}\right)$ in 6-value function
- Too hard to check all of them even if we use computer!

Let's consider how to reduce number of logical functions

Symmetry logical function

The logical function is symmetry on x_{i} and x_{j} if outputs do not change under permutation of x_{i} and x_{j}

Example of symmetry: $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \quad\left(=x_{2}+x_{1}\right)$
Example of not symmetry: $f\left(x_{1}, x_{2}\right)=x_{1}^{\prime}+x_{2} \quad\left(\neq x_{2}^{\prime}+x_{1}\right)$
Quantity of logical function becomes 2^{n+1} if the function has perfect symmetry

The outputs do not change under permutation of all variables
e.g. $x_{1}^{\prime} \cdot x_{2} \cdot x_{3}+x_{1} \cdot x_{2}^{\prime} \cdot x_{3}+x_{1} \cdot x_{2} \cdot x_{3}^{\prime}$

