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Outline

Combinational logical circuit
Logic gate (logic element)
Definition of combinational logical circuit
How to create output signal?

Logical function
Definition of logical function
Relationship between logical circuit

Logical expression
Definition of logical expression
Minterm and maxterm
Axiomatic systems
Amount of logical expression
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Review: outlined flow of LSI design

Define specification
Definition in hardware description language

Architectural design

Circuit with basic logic gates
Logical design

Mask pattern
Physical design

Manufacturing

Logic synthesis

Place and route
This chapter treats

this area
•Logical function
•Logical expression
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Relationship between technical terms

If we minimize logical expression, we can implement 
minimized logical circuit

Logical 
expression 1

Logical 
expression 2

Logical
circuit 1
Logical 
circuit 2......

Specification

Logical
function Truth table

In this section,
please assume
combinational
logical circuit
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Detailed talk of logical design

Specification of sequential machine 

Specification of logical function 

Logical expression

Simplified logical expression
= Basic logic gates

•Simplify of two level logic
•Simplify of multi level logic

-> Chap. 6

-> later Chap. 2

-> later Chap. 2

-> Chap. 3 and 7

-> Chap. 7 and 8

Hardware Design I (Chap. 2) 6
Computing Architecture Lab.

Hajime Shimada

Logic gate (logic element)

The electric circuit witch outputs result of logical 
operation

e.g. NOT, NAND
Both inputs and outputs can only take 0 or 1

x Q
0

x Q
11 0

x
Q

y

NOT gate NAND gate Circuit symbol

Circuit symbol

-> Chap. 1
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NOT, AND, and OR on Boolean algebra

Logical circuit operates on Boolean algebra
Here’s basic logic from Boolean algebra

x    Q
0    1
1    0

x Q
x

y

Q
x

y

Q

x  y    Q
0  0    0
0  1    0
1  0    0
1  1    1

x  y    Q
0  0    0
0  1    1
1  0    1
1  1    1

NOT
AND OR
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NOT, AND, and OR on Venn diagram

In some case, imaging Venn diagram helps 
understanding

NOT: left area
AND: shared area
OR: sum of area

A・B A+BAA
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NAND and NOR on Boolean algebra

Physical implementation is easy
Usually, AND and OR are implemented by combining 
NOT and NAND/NOR

x

y

Q
x

y

Q

x  y    Q
0  0    1
0  1    1
1  0    1
1  1    0

x  y    Q
0  0    1
0  1    0
1  0    0
1  1    0

NAND

= OR

The circle 
represents negation

= AND

NOR

-> Chap. 1
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Combinational logical circuit

The signal flow must be contra flow
The output of the gate will be defined from input 
side
The output is defined with current input

No loop in it
It is also called “acyclic circuit”

In
pu

ts

O
ut

pu
t

Signal flow
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Let’s assume looped logic circuit (1/2)

It sometimes gives unstable output
Let’s assume 1 is inputted under 0 output status

Let’s assume 1 is inputted under 1 output status

Input Output
0

1 1
0

1

Input Output
1

1 0
1

0

The output switches 0/1 forever!!!    ->oscillator
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Let’s assume looped logic circuit (2/2)

We rarely achieve stable circuit with looped 
combinational circuit

Let’s assume 1 is inputted under 1 output status
It continues to output 1

Once input falls to 0, the output changes to 0 forever

Input
Output1->0

0 0->1
1->0

Input
Output1

1 0
1

Usually, they are rare and utilization is limited...
How to crate loop?
-> Sequential circuit

(Chap. 6)
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Definition of combinational logic with 
directed graph

Set of vertices: V={a, b, c, d, e, f, g, h}
Set of edges: E⊆(V×V)
E={(a,e), (b,e), (b,d), (c,f), (d,f), (e,g), (f,g), (g,h)}
Label of vertex：NOT, NAND, and so on

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h
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If you felt “what is directed graph?” ...

Please relearn “graph theory”
The sets of vertices and edges
e.g. network connection graph, schematic diagram, ...
Specific graph: tree, directed graph, weighted 
graph, ...

It is widely used in informatics world
Syntax tree (compiler)
Markov chain (voice recognition)
Perceptron (neural network)
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About technical terms of set theory

Set
Gathered set of elements
e.g. {0, 1}, {a, b, ..., z}, ...

Cartesian product
A set of ordered pairs of elements
Notation: A × B (A,B: set)
e.g. {0, 1} × {a, b} = {(0,a), (0,b), (1,a), (1,b)}
Other notation: V2, {0, 1}2
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The syntax of combinational logic from 
graph theory

Directed Acyclic Graph (DAG): (V, E)
V: set of vertices
E: set of edges, subset of (V × V)

(V × V) denotes set of Cartesian product

Allocate logic gate (e.g. NAND) label to vertices
Allocate 1 label to 1 vertex
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Terms of combinational logic (1/3)

Fan-in: a input side of edge
e.g. v1 is the fan-in of edge (v1, v2) 
Viewpoint from the v2 side

Fan-out: a output side of edge (v1, v2) 
e.g. v2 is the fan-out of edge (v1, v2) 

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

fan-in

fan-out

primary
output

primary input

path
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Terms of combinational logic (2/3)

Primary input: a vertex which does not have fan-
in
Primary output: a vertex which does not have 
fan-out

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

primary
output

primary input

path

fan-in

fan-out
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Terms of combinational logic (3/3)

Path: a set of edges from primary input to 
primary output 

e.g. (v1, v2) (v2, v3) ... (vn-1, vn)
v1 is transitive fan-in
vn is transitive fan-out

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

primary
output

primary input

path

fan-in

fan-out
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Value allocation to logic circuit

Value allocation
Allocate 0/1 value to (output of) each vertex
Adequate allocation: satisfies the truth of gate

The allocation will be defined if all of primary 
input has defined
It is also called logic simulation

0

1
0

1

NOT

NANDa

b

0

1
1

0

NOT

NANDa

b

Adequate allocation Not adequate allocation
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The algorithm of value allocation

1. Define the value of primary inputs
Primary inputs are called level 0 vertices

2. Define the value of level 1 vertices
Level 1 vertices: all inputs of them are primary input
All inputs value are already defined in 1.

3. Define the value of level 2 vertices
Level 2 vertices: all inputs of them are less than level 1 (level 0 
or 1)

4. Define level n vertices until the all of the vertices have 
defined

Level n vertices: all inputs of them are less than level n-1
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Example of value allocation (1/4)

Allocate value to primary inputs (level 0 vertices)
We can allocate them without constraint
Usually, they are given

0

1

1

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

Level 0 Level 1

Level 2

Level 3
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Example of value allocation (2/4)

Allocate values to level 1 vertices
Which are only connected to primary inputs

0

1

1
0

1

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

Level 0 Level 1

Level 2

Level 3
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Example of value allocation (3/4)

Allocate values to level 2 vertices
Which are only connected to less than level 1 vertices
See the vertices which values have already allocated

0

1

1
0

1

1
NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

Level 0 Level 1

Level 2

Level 3
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Example of value allocation (4/4)

Allocate value to level 3 vertices
Which are only connected to less than level 2 vertices
The allocation of primary outputs are the same to the 
prior vertices

0

1

1
0

1

1
0NOT

NAND

NAND

NAND
a

b

c
d

e

f g
0

h

Level 0 Level 1

Level 2

Level 3
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Short exercise

Allocate values to left vertices
If you left time, add level notations to the vertices

0

1

1

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND
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The answer of short exercise

0

1

1

1

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

1

0

1

0
1

1

0

Level 1

Level 2

Level 2

Level 3

Level 4

Level 5

Level 5

Level 6

0
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Outline

Combinational logical circuit
Logic gate (logic element)
Definition of combinational logical circuit
How to create output signal?

Logical function
Definition of logical function
Relationship between logical circuit

Logical expression
Definition of logical expression
Minterm and maxterm
Axiomatic systems
Amount of logical expression
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Definition of logical function from 
mathematical viewpoint

Representation of the relationship between input 
value and output value
The definition of n-value logical function:
Projection from {0, 1}n to {0, 1}

Subset f ⊆ {0, 1}n × {0, 1} which does not include 
both (X, 0) ∈ f and (X, 1) ∈ f in arbitrary X
We denote it y = f(X) if (X, y) ∈ f
{0, 1}n is called domain
{0, 1} is called codomain
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Example of definition of 3-value 
logical function (notated by logical circuit)

It outputs 0 if we input (0, 0, 0) into it
It outputs 1 if we input (0, 0, 1) into it

It outputs 1 if we input (1, 1, 1) into it

In
pu

ts

...

This is 
logical function!

O
ut

pu
t
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Examples of definition of representative 
logical function

The function of NOT ⊆ {0,1}×{0,1}
{(0, 1), (1, 0)}

The function of AND ⊆ {0,1}2×{0,1}
{((0, 0), 0), ((0, 1), 0), ((1, 0), 0), ((1, 1), 1)}

The function of AND ⊆ {0,1}2×{0,1}
{((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 1)}

Input Output
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Hot to denote them in usual?

Usually, we do not use mathematical definition
We usually use following notations 

Logical circuit
Truth table
Logical expression
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Truth table

One of the representation style of logical 
function
Aligning output values for all possible inputs
The size of n values logical function is 2n

x1  x2   f(x1,x2) g(x1,x2) h(x1,x2)
0   0          0              0         h(0, 0)
0   1          0              1         h(0, 1)
1   0          0              1         h(1, 0)
1   1          1              0         h(1, 1)

Logical function Truth tableOne for one
relationship

If truth tables of two 
functions are identical, 
the functions are 
identical
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Relationship between logical function and 
logical circuit

Logical function represents the relationship of 
input value and output value in combinational 
logical circuit

x1 y
x2

y

x1

x2

x1 x2 y
0  0      0
0  1      0
1  0      0
1  1      1

Relationship
of input/output

Many corresponding
logical circuits

Logical function y

Truth table
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Relationship between technical terms

If we minimize logical expression, we can implement 
minimized logical circuit

Logical 
expression 1

Logical 
expression 2

Logical
circuit 1
Logical 
circuit 2......

Specification

Logical
function Truth table

Many possible 
candidates
for these!

Equal
Unique
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Multiple output logical function

In many case, digital system has multiple 
outputs
Usually, we decompose it to multiple single 
output function for simplicity

O
ut

pu
ts

In
pu

ts
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Truth table of multiple output logical 
function

Multiple output function (m outputs):
Projection from {0, 1}n to {0, 1}m

List of m projections from {0, 1}n to {0, 1}

x1  x2       f0(x1,x2) f1(x1,x2)

0    0            0                0
0    1            0                1
1    0            0                1
1    1            1                0
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Operation between logical functions

We can extend operation on logical value to 
logical function

(f ・ g) (x1, x2, ..., xn) = f(x1, ..., xn) ・ g(x1,..., xn)
(f + g) (x1, x2, ..., xn) = f(x1, ..., xn) + g(x1,..., xn)
(f') (x1, x2, ..., xn) = f(x1, x2, ..., xn)‘

Detail is taught in following logical expression 
section

Hardware Design I (Chap. 2) 39
Computing Architecture Lab.

Hajime Shimada

Summary of logical function

It is a function from {0, 1}n to {0, 1}
{0, 1}n×{0,1} with some constraint

It is represented uniquely with truth table
List of relationship between all inputs and outputs
But it requires 2n size of memory

We can apply operation on it Logical function:
The relationship between
inputs and outputs
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Combinational logical circuit
Logic gate (logic element)
Definition of combinational logical circuit
How to create output signal?

Logical function
Definition of logical function
Relationship between logical circuit

Logical expression
Definition of logical expression
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Logical expression

One of the expression of logical function
Represent it with arrangement of variable which 
denotes logical function
e.g. x + y・z + x・y’・z’

Efficient than truth table
But there’s no uniqueness
x = a+b;  y = c・d; z = x+y  ->  z = (a+b) + (c・d)

a
b
c
d

x
z

a+b
x+y

a
b

x
z

y c・d
c
d y
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The definition of logical expression

1. Logical variables are logical expression
e.g. x, y, z, x1, x2, a, b, ...

2. If E1 and E2 are logical expression,
 (E1・E2), (E1+E2), (E1') are logical expression

e.g. (x・y), (x+y), (x+(y・z)), (x+(y'))

Generated in recursively 
We can omit brackets by adding order to 
operations

Order: ', ・, and +
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The expression of logical function with 
logical expression (1/2)

Pay attention to the logical function which has 
only one “1” output in truth table

Called minterm
Minterm can be represented by AND and NOT

x y      x’･y’ x’･y     x･y’ x･y
0 0       1         0         0        0         
0 1       0         1         0        0         
1 0       0         0         1        0         
1 1       0         0         0        1         

Minterm
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The expression of logical function with 
logical expression (2/2)

The logical function which has multiple “1”
output is represented by OR of minterms
The arbitrary function can be represented with 
AND, OR, and NOT of logical variable

x y      x’･y’ x’･y     x･y’ x･y    f(x,y)
0 0       1         0         0        0         0
0 1       0         1 0        0         1
1 0       0         0         1 0         1
1 1       0         0         0        1         0

= x’・y + x・y’

Minterm
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Notation only 2-input NAND or NOR

We can represent NOT, AND, and OR with 
NAND gates by following wire connection

Called “NAND has functional completeness”
Similar representation can be done with only 
NOR gates

NOT with NAND AND with NAND OR with NAND

See De Morgan’s law in later
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Sum of products

Definition
Literal: Logical value or the negation of logical value

a: positive literal
a': negative literal

1. Create term with AND of literals
2. Create logical expression with OR of 1.
e.g. abc + a'b'c + ac, ac + bc + ad'e
Other names: AND-OR type, two level logic
The sum of minterms has special name

->Disjunctive Normal Form (DNF)
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Disjunctive Normal Form (DNF)

Sum of minterms without same minterm
Arbitrary logical function can be expressed with DNF

f  = a’b + ab’
g = a’b’ + ab

h = a’b’c + a’bc + ab’c + abc’
s = a’b’c + a’bc + ab’c + abc
t = a’b’c’ + a’b’c + abc’ + abc

a  b
0  0     a’b’
0  1     a’b
1  0     ab’
1  1     ab

f     g
0    1
1    0
1    0
0    1

a  b  c
0  0  0   a’b’c’
0  0  1   a’b’c
0  1  0   a’bc’
0  1  1   a’bc
1  0  0   ab’c’
1  0  1   ab’c
1  1  0   abc’
1  1  1   abc

h    s     t
0    0    1
1    1    1
0    0    0
1    1    0
0    0    0
1    1    0
1    0    1
0    1    1
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Product of sums

Definition
1.Create term with OR of literals
2.Create logical expression with AND of 1.

e.g. (a+b'+c) (a'+b+c)(d+e')
There’s a counterpart notation of DNF
->Conjunctive Normal Form (CNF)

Sum of maxterms
Maxterm: the logical function which has only one “0”
output in truth table
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Maxterm

Pay attention to the logical function which has 
only one “0” output in truth table

Called maxterm
Maxterm can be represented by OR and NOT

x y      x+y     x+y’ x’+y    x’+y’ f(x,y)
0 0       0 1         1        1         0
0 1       1         0         1        1         1
1 0       1         1         0        1         1
1 1       1         1         1        0 0

= (x+y)(x’+y’)

Maxterm
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Conjunctive Normal Form (CNF)

Sum of maxterms without same maxterm
Arbitrary logical function can be expressed with CNF

f  = (a’+b’)(a+b)
g = (a’+b)(a+b’)

h = (a+b+c)(a+b’+c)(a’+b+c)(a’+b’+c’)
s = (a+b+c)(a+b’+c)(a’+b+c)(a’+b’+c)
t = (a+b’+c)(a+b’+c’)(a’+b+c)(a’+b+c’)

a  b
0  0     a’b’
0  1     a’b
1  0     ab’
1  1     ab

f     g
0    1
1    0
1    0
0    1

a  b  c
0  0  0   a’b’c’
0  0  1   a’b’c
0  1  0   a’bc’
0  1  1   a’bc
1  0  0   ab’c’
1  0  1   ab’c
1  1  0   abc’
1  1  1   abc

h    s     t
0    0    1
1    1    1
0    0    0
1    1    0
0    0    0
1    1    0
1    0    1
0    1    1
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Symbol simulation

A method to obtain logical expression from 
logical circuit
Propagate symbol from inputs

Operate expression from lower level
->Similar to value allocation

a

b

c

b'

(a・b)'

(b'・c)'
( (a・b)'・(b'・c)')'

Simplify this
with latter technique
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Simplify with operation on Boolean 
algebra

The logical expression given from symbol 
simulation has complexity

e.g. ( (a・b)'・(b'・c)')'
How to simplify them?

Simplify with operation on Boolean algebra
General operation rule
De Morgan’s law
Shannon's expansion
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Axiomatic systems related simplification 
on Boolean algebra

General operation rules
Idempotent: a+a = a
Commutativity: a+b = b+a
Associatively: (a+b)+c = a+(b+c)
Absorption: a+(a・b) = a
Distributive: (a+b)・c = a・c+b・c
Involution: (a')' = a
Complements: a+a' = 1
Identity: a・1 = a
Domination: a・0 = 0
De Morgan's law: (a+b)' = a'・b'

a b

Venn diagram

a b

c
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Axiomatic systems related simplification 
on Boolean algebra

Duality
The rule that exchanged “+ and ・” and “0 and 1” will 
be approved (Dual rule)
e.g. a+a = a          a・a = a
e.g. a+a' = 1 � a・a' = 0

We can insert arbitrary logical expressions into a, 
b, and c in prior equations



10

Hardware Design I (Chap. 2) 55
Computing Architecture Lab.

Hajime Shimada

Review: 2-input logical operation

AND, OR, NAND, and NOR: described before
XOR: output 1 if the inputs are not equal
XNOR: output 1 if the inputs are equal

AND   OR    NAND    NOR      XOR       XNOR
x  y     x･y   x+y     (x･y)’ (x+y)’ x + y      (x + y)’
0  0      0      0          1            1            0         1
0  1      0      1          1            0            1         0
1  0      0      1          1            0            1         0
1  1      1      1          0            0            0         1
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De Morgan’s law

(x・y)' = x'＋y'
(x＋y)' = x'・y'
We can insert arbitrary logical expressions into x 
and y

x  y    (x･y)' x'+y'  (x+y)'   x'･y'

0  0      1         1        1         1        
0  1      1         1        0         0        
1  0      1         1        0         0        
1  1      0         0        0         0        

Equal Equal
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De Morgan's law on Venn diagram

Here’s (x・y)' = x'＋y' on Venn diagram

x y

(x・y)'

x y

x'

x y

y'

x y

x・y
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De Morgan's law on circuit level

NAND and NOR becomes AND and OR with 
negated inputs
(x・y)' = x'＋y'

(x＋y)' = x'・y'
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A practical use of De Morgan’s law on 
circuit level

NAND-NAND two level logic circuit
= AND-OR two level logic circuit

1. Apply De Morgan’s law into 
latter NAND gate

2. Add involution rule
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Generalized De Morgan’s law

Widely used when you want to negate arbitrary 
logical function f

F’(x1, x2,・・・, xn) = G(x1, x2,・・・, xn)

Xi      Xi'
＋ ・

Under

e.g. ( (a・b)'・(b'・c)' )' = (a・b) + (b'・c) = a・b + b'・c

e.g. (a’b’+a’b+ab’)’ = (a+b)(a+b’)(a’+b)
= aaa’+aab+ab’a’+ab’b+baa’+bab+bb’a’+bb’b
= ab + ab = ab
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How to create CNF?

1. Gain DNF of negated function
Sum of “0” term in truth table

2. Negate function obtained in 1.
a  b  c
0  0  0   a’b’c’
0  0  1   a’b’c
0  1  0   a’bc’
0  1  1   a’bc
1  0  0   ab’c’
1  0  1   ab’c
1  1  0   abc’
1  1  1   abc

h    s     t
0    0    1
1    1    1
0    0    0
1    1    0
0    0    0
1    1    0
1    0    1
0    1    1

h’ = a’b’c’ + a’bc’ + ab’c’ + abc

h’’ = (a’b’c’ + a’bc’ + ab’c’ + abc)’

h = (a+b+c)(a+b’+c) 
(a’+b+c)(a’+b’+c’)

De Morgan’s law
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Short exercise

Show CNF of following 
logical function

a  b  c  d
0  0  0  0
0  0  0  1   
0  0  1  0   
0  0  1  1  
0  1  0  0   
0  1  0  1  
0  1  1  0  
0  1  1  1 
1  0  0  0   
1  0  0  1   
1  0  1  0   
1  0  1  1   
1  1  0  0   
1  1  0  1   
1  1  1  0   
1  1  1  1   

f   
1  
1  
0  
1  
1  
1  
1  
0  
1  
1  
1  
1  
1  
1  
0  
1  
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Answer

Show CNF of following 
logical function

a  b  c  d
0  0  0  0
0  0  0  1   
0  0  1  0   
0  0  1  1  
0  1  0  0   
0  1  0  1  
0  1  1  0  
0  1  1  1 
1  0  0  0   
1  0  0  1   
1  0  1  0   
1  0  1  1   
1  1  0  0   
1  1  0  1   
1  1  1  0   
1  1  1  1   

f   
1  
1  
0  
1  
1  
1  
1  
0  
1  
1  
1  
1  
1  
1  
0  
1  

f’ = a’b’cd’ + a’bcd + abcd’
f = f’’ = (a’b’cd’ + a’bcd + abcd’)’
= (a+b+c’+d)(a+b’+c’+d’)(a’+b’+c’+d)
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How to translate logical expression to 
sum of products or product of sums

h = a’(b’c + bc) + b’c’ h’ = (a’(b’c + bc) + b’c’)’

h = a’b’c + a’bc + b’c’
= a’c + b’c’

h’ = ab + ac + bc’

h’’ = h = (ab + ac + bc’)’

h = (a’+b’)(a’+c’)(b’+c)

Sum of products

Expand Expand
Negate

Negate

De Morgan’s law

Product of Sums

Note that the expansion
route is not unique 
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Shannon’s expansion

A technique also used for translating logical 
expression to sum of products notation

f(x1, x2,・・・, xn) = x1'・ f(0, x2,・・・, xn) + x1・ f(1, x2,・・・, xn)

e.g. (a’b’+a’b+ab’)’
= a’((1・b’+1・b+0・b’)’)+a((0・b+0・b+1・b’)’)

= a’((b’+b)’)+a((b’)’)

= a’(0)+a(b’’) = ab

Substitute a=0 Substitute a=1

=1
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Short exercise

Expand following function by Shannon’s 
expansion and translate it to sum of products
f = {(a・b)'・(b'・c)'}'
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Answer

Expand following function by Shannon’s 
expansion and translate it to sum of products
f = {(a・b)'・(b'・c)'}'

f = a’・{(0・b)’・(b’・c)’}’ + a・{(1・b)’・(b’・c)’}’

= a’・{(b’・c)’}’ + a・{b’・(b’・c)’}’
= b’・[a’・{(1・c)’}’ + a・{1・(1・c)’}’] + b・[a’・{(0・c)’}’ + a・{0・(0・c)’}’

= b’・(a’・c + a・c) + b・a
= (a’ + a)・b’・c + a・b = a・b + b’・c

=1 =b’

=c =c =1=0

=1
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Equivalence of logical function 

There are equivalent logical expression in each 
logical function

In logical circuits design, there’s possibility that it 
includes same circuits (= same logical expression)

-> Redundant! (consume unnecessary silicon resources)

How to check equivalence of them?
Checking on truth table is one method

The size of truth table is 2n on n-value

Cogitated algorithm or data structure are required
-> Later Chap. 2
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Quantity of logical function

The logical function can be represented uniquely with 
truth table
But there are 22n of logical functions in n-value logical 
function x  y    Q

0  0    ?
0  1    ?
1  0    ?
1  1    ?

There are 24 possible outputs

x  y
0  0     0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1
0  1     0  0  0  0  1  1  1  1  0  0  0  0  1  1  1  1
1  0     0  0  1  1  0  0  1  1  0  0  1  1  0  0  1  1
1  1     0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
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Examples of 2-input logical function

There’s possible functions which are not named
But usually, there’s no use

AND   XOR
x  y     x･y    x + y    (= x)     (= 0)      (= y)       (= 1)      
0  0      0        0          1           0            0        1
0  1      0        1          0           0            1        1
1  0      0        1          1           0            0        1
1  1      1        0 0           0            1            1
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Quantity of logical function

It increases dramatically in proportion to the 
number of values

28 = 256 in 3-value function
216 = 65536 in 4-value function
232 = 4294967296 in 5-value function
264 (≒ 1.8×1019) in 6-value function

Too hard to check all of them even if we use computer!

Let’s consider how to reduce number of logical 
functions
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Symmetry logical function

Quantity of logical function becomes 2n+1 if the 
function has perfect symmetry

The outputs do not change under permutation of all 
variables
e.g. x’1・x2・x3+x1・x’2・x3+x1・x2・x’3

Example of symmetry: f(x1,x2) = x1 + x2 (= x2 + x1)
Example of not symmetry: f(x1,x2) = x’1 + x2 (≠ x’2 + x1)

The logical function is symmetry on xi and xj if outputs 
do not change under permutation of xi and xj


