
1

1

Hardware Design I Chap. 2
Basis of logical circuit, logical

expression, and logical function

Computing Architecture Lab.
Hajime Shimada

E-mail: shimada@is.naist.jp

Hardware Design I (Chap. 2) 2
Computing Architecture Lab.

Hajime Shimada

Outline

Combinational logical circuit
Logic gate (logic element)
Definition of combinational logical circuit
How to create output signal?

Logical function
Definition of logical function
Relationship between logical circuit

Logical expression
Definition of logical expression
Minterm and maxterm
Axiomatic systems
Amount of logical expression

Hardware Design I (Chap. 2) 3
Computing Architecture Lab.

Hajime Shimada

Review: outlined flow of LSI design

Define specification
Definition in hardware description language

Architectural design

Circuit with basic logic gates
Logical design

Mask pattern
Physical design

Manufacturing

Logic synthesis

Place and route
This chapter treats

this area
•Logical function
•Logical expression

Hardware Design I (Chap. 2) 4
Computing Architecture Lab.

Hajime Shimada

Relationship between technical terms

If we minimize logical expression, we can implement
minimized logical circuit

Logical
expression 1

Logical
expression 2

Logical
circuit 1
Logical
circuit 2......

Specification

Logical
function Truth table

In this section,
please assume
combinational
logical circuit

Hardware Design I (Chap. 2) 5
Computing Architecture Lab.

Hajime Shimada

Detailed talk of logical design

Specification of sequential machine

Specification of logical function

Logical expression

Simplified logical expression
= Basic logic gates

•Simplify of two level logic
•Simplify of multi level logic

-> Chap. 6

-> later Chap. 2

-> later Chap. 2

-> Chap. 3 and 7

-> Chap. 7 and 8

Hardware Design I (Chap. 2) 6
Computing Architecture Lab.

Hajime Shimada

Logic gate (logic element)

The electric circuit witch outputs result of logical
operation

e.g. NOT, NAND
Both inputs and outputs can only take 0 or 1

x Q
0

x Q
11 0

x
Q

y

NOT gate NAND gate Circuit symbol

Circuit symbol

-> Chap. 1

2

Hardware Design I (Chap. 2) 7
Computing Architecture Lab.

Hajime Shimada

NOT, AND, and OR on Boolean algebra

Logical circuit operates on Boolean algebra
Here’s basic logic from Boolean algebra

x Q
0 1
1 0

x Q
x

y

Q
x

y

Q

x y Q
0 0 0
0 1 0
1 0 0
1 1 1

x y Q
0 0 0
0 1 1
1 0 1
1 1 1

NOT
AND OR

Hardware Design I (Chap. 2) 8
Computing Architecture Lab.

Hajime Shimada

NOT, AND, and OR on Venn diagram

In some case, imaging Venn diagram helps
understanding

NOT: left area
AND: shared area
OR: sum of area

A・B A+BAA

Hardware Design I (Chap. 2) 9
Computing Architecture Lab.

Hajime Shimada

NAND and NOR on Boolean algebra

Physical implementation is easy
Usually, AND and OR are implemented by combining
NOT and NAND/NOR

x

y

Q
x

y

Q

x y Q
0 0 1
0 1 1
1 0 1
1 1 0

x y Q
0 0 1
0 1 0
1 0 0
1 1 0

NAND

= OR

The circle
represents negation

= AND

NOR

-> Chap. 1

Hardware Design I (Chap. 2) 10
Computing Architecture Lab.

Hajime Shimada

Combinational logical circuit

The signal flow must be contra flow
The output of the gate will be defined from input
side
The output is defined with current input

No loop in it
It is also called “acyclic circuit”

In
pu

ts

O
ut

pu
t

Signal flow

Hardware Design I (Chap. 2) 11
Computing Architecture Lab.

Hajime Shimada

Let’s assume looped logic circuit (1/2)

It sometimes gives unstable output
Let’s assume 1 is inputted under 0 output status

Let’s assume 1 is inputted under 1 output status

Input Output
0

1 1
0

1

Input Output
1

1 0
1

0

The output switches 0/1 forever!!! ->oscillator
Hardware Design I (Chap. 2) 12

Computing Architecture Lab.
Hajime Shimada

Let’s assume looped logic circuit (2/2)

We rarely achieve stable circuit with looped
combinational circuit

Let’s assume 1 is inputted under 1 output status
It continues to output 1

Once input falls to 0, the output changes to 0 forever

Input
Output1->0

0 0->1
1->0

Input
Output1

1 0
1

Usually, they are rare and utilization is limited...
How to crate loop?
-> Sequential circuit

(Chap. 6)

3

Hardware Design I (Chap. 2) 13
Computing Architecture Lab.

Hajime Shimada

Definition of combinational logic with
directed graph

Set of vertices: V={a, b, c, d, e, f, g, h}
Set of edges: E⊆(V×V)
E={(a,e), (b,e), (b,d), (c,f), (d,f), (e,g), (f,g), (g,h)}
Label of vertex：NOT, NAND, and so on

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

Hardware Design I (Chap. 2) 14
Computing Architecture Lab.

Hajime Shimada

If you felt “what is directed graph?” ...

Please relearn “graph theory”
The sets of vertices and edges
e.g. network connection graph, schematic diagram, ...
Specific graph: tree, directed graph, weighted
graph, ...

It is widely used in informatics world
Syntax tree (compiler)
Markov chain (voice recognition)
Perceptron (neural network)

Hardware Design I (Chap. 2) 15
Computing Architecture Lab.

Hajime Shimada

About technical terms of set theory

Set
Gathered set of elements
e.g. {0, 1}, {a, b, ..., z}, ...

Cartesian product
A set of ordered pairs of elements
Notation: A × B (A,B: set)
e.g. {0, 1} × {a, b} = {(0,a), (0,b), (1,a), (1,b)}
Other notation: V2, {0, 1}2

Hardware Design I (Chap. 2) 16
Computing Architecture Lab.

Hajime Shimada

The syntax of combinational logic from
graph theory

Directed Acyclic Graph (DAG): (V, E)
V: set of vertices
E: set of edges, subset of (V × V)

(V × V) denotes set of Cartesian product

Allocate logic gate (e.g. NAND) label to vertices
Allocate 1 label to 1 vertex

Hardware Design I (Chap. 2) 17
Computing Architecture Lab.

Hajime Shimada

Terms of combinational logic (1/3)

Fan-in: a input side of edge
e.g. v1 is the fan-in of edge (v1, v2)
Viewpoint from the v2 side

Fan-out: a output side of edge (v1, v2)
e.g. v2 is the fan-out of edge (v1, v2)

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

fan-in

fan-out

primary
output

primary input

path

Hardware Design I (Chap. 2) 18
Computing Architecture Lab.

Hajime Shimada

Terms of combinational logic (2/3)

Primary input: a vertex which does not have fan-
in
Primary output: a vertex which does not have
fan-out

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

primary
output

primary input

path

fan-in

fan-out

4

Hardware Design I (Chap. 2) 19
Computing Architecture Lab.

Hajime Shimada

Terms of combinational logic (3/3)

Path: a set of edges from primary input to
primary output

e.g. (v1, v2) (v2, v3) ... (vn-1, vn)
v1 is transitive fan-in
vn is transitive fan-out

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

primary
output

primary input

path

fan-in

fan-out

Hardware Design I (Chap. 2) 20
Computing Architecture Lab.

Hajime Shimada

Value allocation to logic circuit

Value allocation
Allocate 0/1 value to (output of) each vertex
Adequate allocation: satisfies the truth of gate

The allocation will be defined if all of primary
input has defined
It is also called logic simulation

0

1
0

1

NOT

NANDa

b

0

1
1

0

NOT

NANDa

b

Adequate allocation Not adequate allocation

Hardware Design I (Chap. 2) 21
Computing Architecture Lab.

Hajime Shimada

The algorithm of value allocation

1. Define the value of primary inputs
Primary inputs are called level 0 vertices

2. Define the value of level 1 vertices
Level 1 vertices: all inputs of them are primary input
All inputs value are already defined in 1.

3. Define the value of level 2 vertices
Level 2 vertices: all inputs of them are less than level 1 (level 0
or 1)

4. Define level n vertices until the all of the vertices have
defined

Level n vertices: all inputs of them are less than level n-1

Hardware Design I (Chap. 2) 22
Computing Architecture Lab.

Hajime Shimada

Example of value allocation (1/4)

Allocate value to primary inputs (level 0 vertices)
We can allocate them without constraint
Usually, they are given

0

1

1

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

Level 0 Level 1

Level 2

Level 3

Hardware Design I (Chap. 2) 23
Computing Architecture Lab.

Hajime Shimada

Example of value allocation (2/4)

Allocate values to level 1 vertices
Which are only connected to primary inputs

0

1

1
0

1

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

Level 0 Level 1

Level 2

Level 3

Hardware Design I (Chap. 2) 24
Computing Architecture Lab.

Hajime Shimada

Example of value allocation (3/4)

Allocate values to level 2 vertices
Which are only connected to less than level 1 vertices
See the vertices which values have already allocated

0

1

1
0

1

1
NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

Level 0 Level 1

Level 2

Level 3

5

Hardware Design I (Chap. 2) 25
Computing Architecture Lab.

Hajime Shimada

Example of value allocation (4/4)

Allocate value to level 3 vertices
Which are only connected to less than level 2 vertices
The allocation of primary outputs are the same to the
prior vertices

0

1

1
0

1

1
0NOT

NAND

NAND

NAND
a

b

c
d

e

f g
0

h

Level 0 Level 1

Level 2

Level 3

Hardware Design I (Chap. 2) 26
Computing Architecture Lab.

Hajime Shimada

Short exercise

Allocate values to left vertices
If you left time, add level notations to the vertices

0

1

1

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

Hardware Design I (Chap. 2) 27
Computing Architecture Lab.

Hajime Shimada

The answer of short exercise

0

1

1

1

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

1

0

1

0
1

1

0

Level 1

Level 2

Level 2

Level 3

Level 4

Level 5

Level 5

Level 6

0

Hardware Design I (Chap. 2) 28
Computing Architecture Lab.

Hajime Shimada

Outline

Combinational logical circuit
Logic gate (logic element)
Definition of combinational logical circuit
How to create output signal?

Logical function
Definition of logical function
Relationship between logical circuit

Logical expression
Definition of logical expression
Minterm and maxterm
Axiomatic systems
Amount of logical expression

Hardware Design I (Chap. 2) 29
Computing Architecture Lab.

Hajime Shimada

Definition of logical function from
mathematical viewpoint

Representation of the relationship between input
value and output value
The definition of n-value logical function:
Projection from {0, 1}n to {0, 1}

Subset f ⊆ {0, 1}n × {0, 1} which does not include
both (X, 0) ∈ f and (X, 1) ∈ f in arbitrary X
We denote it y = f(X) if (X, y) ∈ f
{0, 1}n is called domain
{0, 1} is called codomain

Hardware Design I (Chap. 2) 30
Computing Architecture Lab.

Hajime Shimada

Example of definition of 3-value
logical function (notated by logical circuit)

It outputs 0 if we input (0, 0, 0) into it
It outputs 1 if we input (0, 0, 1) into it

It outputs 1 if we input (1, 1, 1) into it

In
pu

ts

...

This is
logical function!

O
ut

pu
t

6

Hardware Design I (Chap. 2) 31
Computing Architecture Lab.

Hajime Shimada

Examples of definition of representative
logical function

The function of NOT ⊆ {0,1}×{0,1}
{(0, 1), (1, 0)}

The function of AND ⊆ {0,1}2×{0,1}
{((0, 0), 0), ((0, 1), 0), ((1, 0), 0), ((1, 1), 1)}

The function of AND ⊆ {0,1}2×{0,1}
{((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 1)}

Input Output

Hardware Design I (Chap. 2) 32
Computing Architecture Lab.

Hajime Shimada

Hot to denote them in usual?

Usually, we do not use mathematical definition
We usually use following notations

Logical circuit
Truth table
Logical expression

Hardware Design I (Chap. 2) 33
Computing Architecture Lab.

Hajime Shimada

Truth table

One of the representation style of logical
function
Aligning output values for all possible inputs
The size of n values logical function is 2n

x1 x2 f(x1,x2) g(x1,x2) h(x1,x2)
0 0 0 0 h(0, 0)
0 1 0 1 h(0, 1)
1 0 0 1 h(1, 0)
1 1 1 0 h(1, 1)

Logical function Truth tableOne for one
relationship

If truth tables of two
functions are identical,
the functions are
identical

Hardware Design I (Chap. 2) 34
Computing Architecture Lab.

Hajime Shimada

Relationship between logical function and
logical circuit

Logical function represents the relationship of
input value and output value in combinational
logical circuit

x1 y
x2

y

x1

x2

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

Relationship
of input/output

Many corresponding
logical circuits

Logical function y

Truth table

Hardware Design I (Chap. 2) 35
Computing Architecture Lab.

Hajime Shimada

Relationship between technical terms

If we minimize logical expression, we can implement
minimized logical circuit

Logical
expression 1

Logical
expression 2

Logical
circuit 1
Logical
circuit 2......

Specification

Logical
function Truth table

Many possible
candidates
for these!

Equal
Unique

Hardware Design I (Chap. 2) 36
Computing Architecture Lab.

Hajime Shimada

Multiple output logical function

In many case, digital system has multiple
outputs
Usually, we decompose it to multiple single
output function for simplicity

O
ut

pu
ts

In
pu

ts

7

Hardware Design I (Chap. 2) 37
Computing Architecture Lab.

Hajime Shimada

Truth table of multiple output logical
function

Multiple output function (m outputs):
Projection from {0, 1}n to {0, 1}m

List of m projections from {0, 1}n to {0, 1}

x1 x2 f0(x1,x2) f1(x1,x2)

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Hardware Design I (Chap. 2) 38
Computing Architecture Lab.

Hajime Shimada

Operation between logical functions

We can extend operation on logical value to
logical function

(f ・ g) (x1, x2, ..., xn) = f(x1, ..., xn) ・ g(x1,..., xn)
(f + g) (x1, x2, ..., xn) = f(x1, ..., xn) + g(x1,..., xn)
(f') (x1, x2, ..., xn) = f(x1, x2, ..., xn)‘

Detail is taught in following logical expression
section

Hardware Design I (Chap. 2) 39
Computing Architecture Lab.

Hajime Shimada

Summary of logical function

It is a function from {0, 1}n to {0, 1}
{0, 1}n×{0,1} with some constraint

It is represented uniquely with truth table
List of relationship between all inputs and outputs
But it requires 2n size of memory

We can apply operation on it Logical function:
The relationship between
inputs and outputs

Hardware Design I (Chap. 2) 40
Computing Architecture Lab.

Hajime Shimada

Outline

Combinational logical circuit
Logic gate (logic element)
Definition of combinational logical circuit
How to create output signal?

Logical function
Definition of logical function
Relationship between logical circuit

Logical expression
Definition of logical expression
Minterm and maxterm
Axiomatic systems
Amount of logical expression

Hardware Design I (Chap. 2) 41
Computing Architecture Lab.

Hajime Shimada

Logical expression

One of the expression of logical function
Represent it with arrangement of variable which
denotes logical function
e.g. x + y・z + x・y’・z’

Efficient than truth table
But there’s no uniqueness
x = a+b; y = c・d; z = x+y -> z = (a+b) + (c・d)

a
b
c
d

x
z

a+b
x+y

a
b

x
z

y c・d
c
d y

Hardware Design I (Chap. 2) 42
Computing Architecture Lab.

Hajime Shimada

The definition of logical expression

1. Logical variables are logical expression
e.g. x, y, z, x1, x2, a, b, ...

2. If E1 and E2 are logical expression,
 (E1・E2), (E1+E2), (E1') are logical expression

e.g. (x・y), (x+y), (x+(y・z)), (x+(y'))

Generated in recursively
We can omit brackets by adding order to
operations

Order: ', ・, and +

8

Hardware Design I (Chap. 2) 43
Computing Architecture Lab.

Hajime Shimada

The expression of logical function with
logical expression (1/2)

Pay attention to the logical function which has
only one “1” output in truth table

Called minterm
Minterm can be represented by AND and NOT

x y x’･y’ x’･y x･y’ x･y
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Minterm

Hardware Design I (Chap. 2) 44
Computing Architecture Lab.

Hajime Shimada

The expression of logical function with
logical expression (2/2)

The logical function which has multiple “1”
output is represented by OR of minterms
The arbitrary function can be represented with
AND, OR, and NOT of logical variable

x y x’･y’ x’･y x･y’ x･y f(x,y)
0 0 1 0 0 0 0
0 1 0 1 0 0 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0

= x’・y + x・y’

Minterm

Hardware Design I (Chap. 2) 45
Computing Architecture Lab.

Hajime Shimada

Notation only 2-input NAND or NOR

We can represent NOT, AND, and OR with
NAND gates by following wire connection

Called “NAND has functional completeness”
Similar representation can be done with only
NOR gates

NOT with NAND AND with NAND OR with NAND

See De Morgan’s law in later

Hardware Design I (Chap. 2) 46
Computing Architecture Lab.

Hajime Shimada

Sum of products

Definition
Literal: Logical value or the negation of logical value

a: positive literal
a': negative literal

1. Create term with AND of literals
2. Create logical expression with OR of 1.
e.g. abc + a'b'c + ac, ac + bc + ad'e
Other names: AND-OR type, two level logic
The sum of minterms has special name

->Disjunctive Normal Form (DNF)

Hardware Design I (Chap. 2) 47
Computing Architecture Lab.

Hajime Shimada

Disjunctive Normal Form (DNF)

Sum of minterms without same minterm
Arbitrary logical function can be expressed with DNF

f = a’b + ab’
g = a’b’ + ab

h = a’b’c + a’bc + ab’c + abc’
s = a’b’c + a’bc + ab’c + abc
t = a’b’c’ + a’b’c + abc’ + abc

a b
0 0 a’b’
0 1 a’b
1 0 ab’
1 1 ab

f g
0 1
1 0
1 0
0 1

a b c
0 0 0 a’b’c’
0 0 1 a’b’c
0 1 0 a’bc’
0 1 1 a’bc
1 0 0 ab’c’
1 0 1 ab’c
1 1 0 abc’
1 1 1 abc

h s t
0 0 1
1 1 1
0 0 0
1 1 0
0 0 0
1 1 0
1 0 1
0 1 1

Hardware Design I (Chap. 2) 48
Computing Architecture Lab.

Hajime Shimada

Product of sums

Definition
1.Create term with OR of literals
2.Create logical expression with AND of 1.

e.g. (a+b'+c) (a'+b+c)(d+e')
There’s a counterpart notation of DNF
->Conjunctive Normal Form (CNF)

Sum of maxterms
Maxterm: the logical function which has only one “0”
output in truth table

9

Hardware Design I (Chap. 2) 49
Computing Architecture Lab.

Hajime Shimada

Maxterm

Pay attention to the logical function which has
only one “0” output in truth table

Called maxterm
Maxterm can be represented by OR and NOT

x y x+y x+y’ x’+y x’+y’ f(x,y)
0 0 0 1 1 1 0
0 1 1 0 1 1 1
1 0 1 1 0 1 1
1 1 1 1 1 0 0

= (x+y)(x’+y’)

Maxterm

Hardware Design I (Chap. 2) 50
Computing Architecture Lab.

Hajime Shimada

Conjunctive Normal Form (CNF)

Sum of maxterms without same maxterm
Arbitrary logical function can be expressed with CNF

f = (a’+b’)(a+b)
g = (a’+b)(a+b’)

h = (a+b+c)(a+b’+c)(a’+b+c)(a’+b’+c’)
s = (a+b+c)(a+b’+c)(a’+b+c)(a’+b’+c)
t = (a+b’+c)(a+b’+c’)(a’+b+c)(a’+b+c’)

a b
0 0 a’b’
0 1 a’b
1 0 ab’
1 1 ab

f g
0 1
1 0
1 0
0 1

a b c
0 0 0 a’b’c’
0 0 1 a’b’c
0 1 0 a’bc’
0 1 1 a’bc
1 0 0 ab’c’
1 0 1 ab’c
1 1 0 abc’
1 1 1 abc

h s t
0 0 1
1 1 1
0 0 0
1 1 0
0 0 0
1 1 0
1 0 1
0 1 1

Hardware Design I (Chap. 2) 51
Computing Architecture Lab.

Hajime Shimada

Symbol simulation

A method to obtain logical expression from
logical circuit
Propagate symbol from inputs

Operate expression from lower level
->Similar to value allocation

a

b

c

b'

(a・b)'

(b'・c)'
((a・b)'・(b'・c)')'

Simplify this
with latter technique

Hardware Design I (Chap. 2) 52
Computing Architecture Lab.

Hajime Shimada

Simplify with operation on Boolean
algebra

The logical expression given from symbol
simulation has complexity

e.g. ((a・b)'・(b'・c)')'
How to simplify them?

Simplify with operation on Boolean algebra
General operation rule
De Morgan’s law
Shannon's expansion

Hardware Design I (Chap. 2) 53
Computing Architecture Lab.

Hajime Shimada

Axiomatic systems related simplification
on Boolean algebra

General operation rules
Idempotent: a+a = a
Commutativity: a+b = b+a
Associatively: (a+b)+c = a+(b+c)
Absorption: a+(a・b) = a
Distributive: (a+b)・c = a・c+b・c
Involution: (a')' = a
Complements: a+a' = 1
Identity: a・1 = a
Domination: a・0 = 0
De Morgan's law: (a+b)' = a'・b'

a b

Venn diagram

a b

c

Hardware Design I (Chap. 2) 54
Computing Architecture Lab.

Hajime Shimada

Axiomatic systems related simplification
on Boolean algebra

Duality
The rule that exchanged “+ and ・” and “0 and 1” will
be approved (Dual rule)
e.g. a+a = a a・a = a
e.g. a+a' = 1 � a・a' = 0

We can insert arbitrary logical expressions into a,
b, and c in prior equations

10

Hardware Design I (Chap. 2) 55
Computing Architecture Lab.

Hajime Shimada

Review: 2-input logical operation

AND, OR, NAND, and NOR: described before
XOR: output 1 if the inputs are not equal
XNOR: output 1 if the inputs are equal

AND OR NAND NOR XOR XNOR
x y x･y x+y (x･y)’ (x+y)’ x + y (x + y)’
0 0 0 0 1 1 0 1
0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0
1 1 1 1 0 0 0 1

Hardware Design I (Chap. 2) 56
Computing Architecture Lab.

Hajime Shimada

De Morgan’s law

(x・y)' = x'＋y'
(x＋y)' = x'・y'
We can insert arbitrary logical expressions into x
and y

x y (x･y)' x'+y' (x+y)' x'･y'

0 0 1 1 1 1
0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 0 0 0

Equal Equal

Hardware Design I (Chap. 2) 57
Computing Architecture Lab.

Hajime Shimada

De Morgan's law on Venn diagram

Here’s (x・y)' = x'＋y' on Venn diagram

x y

(x・y)'

x y

x'

x y

y'

x y

x・y

Hardware Design I (Chap. 2) 58
Computing Architecture Lab.

Hajime Shimada

De Morgan's law on circuit level

NAND and NOR becomes AND and OR with
negated inputs
(x・y)' = x'＋y'

(x＋y)' = x'・y'

Hardware Design I (Chap. 2) 59
Computing Architecture Lab.

Hajime Shimada

A practical use of De Morgan’s law on
circuit level

NAND-NAND two level logic circuit
= AND-OR two level logic circuit

1. Apply De Morgan’s law into
latter NAND gate

2. Add involution rule

Hardware Design I (Chap. 2) 60
Computing Architecture Lab.

Hajime Shimada

Generalized De Morgan’s law

Widely used when you want to negate arbitrary
logical function f

F’(x1, x2,・・・, xn) = G(x1, x2,・・・, xn)

Xi Xi'
＋ ・

Under

e.g. ((a・b)'・(b'・c)')' = (a・b) + (b'・c) = a・b + b'・c

e.g. (a’b’+a’b+ab’)’ = (a+b)(a+b’)(a’+b)
= aaa’+aab+ab’a’+ab’b+baa’+bab+bb’a’+bb’b
= ab + ab = ab

11

Hardware Design I (Chap. 2) 61
Computing Architecture Lab.

Hajime Shimada

How to create CNF?

1. Gain DNF of negated function
Sum of “0” term in truth table

2. Negate function obtained in 1.
a b c
0 0 0 a’b’c’
0 0 1 a’b’c
0 1 0 a’bc’
0 1 1 a’bc
1 0 0 ab’c’
1 0 1 ab’c
1 1 0 abc’
1 1 1 abc

h s t
0 0 1
1 1 1
0 0 0
1 1 0
0 0 0
1 1 0
1 0 1
0 1 1

h’ = a’b’c’ + a’bc’ + ab’c’ + abc

h’’ = (a’b’c’ + a’bc’ + ab’c’ + abc)’

h = (a+b+c)(a+b’+c)
(a’+b+c)(a’+b’+c’)

De Morgan’s law

Hardware Design I (Chap. 2) 62
Computing Architecture Lab.

Hajime Shimada

Short exercise

Show CNF of following
logical function

a b c d
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

f
1
1
0
1
1
1
1
0
1
1
1
1
1
1
0
1

Hardware Design I (Chap. 2) 63
Computing Architecture Lab.

Hajime Shimada

Answer

Show CNF of following
logical function

a b c d
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

f
1
1
0
1
1
1
1
0
1
1
1
1
1
1
0
1

f’ = a’b’cd’ + a’bcd + abcd’
f = f’’ = (a’b’cd’ + a’bcd + abcd’)’
= (a+b+c’+d)(a+b’+c’+d’)(a’+b’+c’+d)

Hardware Design I (Chap. 2) 64
Computing Architecture Lab.

Hajime Shimada

How to translate logical expression to
sum of products or product of sums

h = a’(b’c + bc) + b’c’ h’ = (a’(b’c + bc) + b’c’)’

h = a’b’c + a’bc + b’c’
= a’c + b’c’

h’ = ab + ac + bc’

h’’ = h = (ab + ac + bc’)’

h = (a’+b’)(a’+c’)(b’+c)

Sum of products

Expand Expand
Negate

Negate

De Morgan’s law

Product of Sums

Note that the expansion
route is not unique

Hardware Design I (Chap. 2) 65
Computing Architecture Lab.

Hajime Shimada

Shannon’s expansion

A technique also used for translating logical
expression to sum of products notation

f(x1, x2,・・・, xn) = x1'・ f(0, x2,・・・, xn) + x1・ f(1, x2,・・・, xn)

e.g. (a’b’+a’b+ab’)’
= a’((1・b’+1・b+0・b’)’)+a((0・b+0・b+1・b’)’)

= a’((b’+b)’)+a((b’)’)

= a’(0)+a(b’’) = ab

Substitute a=0 Substitute a=1

=1

Hardware Design I (Chap. 2) 66
Computing Architecture Lab.

Hajime Shimada

Short exercise

Expand following function by Shannon’s
expansion and translate it to sum of products
f = {(a・b)'・(b'・c)'}'

12

Hardware Design I (Chap. 2) 67
Computing Architecture Lab.

Hajime Shimada

Answer

Expand following function by Shannon’s
expansion and translate it to sum of products
f = {(a・b)'・(b'・c)'}'

f = a’・{(0・b)’・(b’・c)’}’ + a・{(1・b)’・(b’・c)’}’

= a’・{(b’・c)’}’ + a・{b’・(b’・c)’}’
= b’・[a’・{(1・c)’}’ + a・{1・(1・c)’}’] + b・[a’・{(0・c)’}’ + a・{0・(0・c)’}’

= b’・(a’・c + a・c) + b・a
= (a’ + a)・b’・c + a・b = a・b + b’・c

=1 =b’

=c =c =1=0

=1

Hardware Design I (Chap. 2) 68
Computing Architecture Lab.

Hajime Shimada

Equivalence of logical function

There are equivalent logical expression in each
logical function

In logical circuits design, there’s possibility that it
includes same circuits (= same logical expression)

-> Redundant! (consume unnecessary silicon resources)

How to check equivalence of them?
Checking on truth table is one method

The size of truth table is 2n on n-value

Cogitated algorithm or data structure are required
-> Later Chap. 2

Hardware Design I (Chap. 2) 69
Computing Architecture Lab.

Hajime Shimada

Quantity of logical function

The logical function can be represented uniquely with
truth table
But there are 22n of logical functions in n-value logical
function x y Q

0 0 ?
0 1 ?
1 0 ?
1 1 ?

There are 24 possible outputs

x y
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Hardware Design I (Chap. 2) 70
Computing Architecture Lab.

Hajime Shimada

Examples of 2-input logical function

There’s possible functions which are not named
But usually, there’s no use

AND XOR
x y x･y x + y (= x) (= 0) (= y) (= 1)
0 0 0 0 1 0 0 1
0 1 0 1 0 0 1 1
1 0 0 1 1 0 0 1
1 1 1 0 0 0 1 1

Hardware Design I (Chap. 2) 71
Computing Architecture Lab.

Hajime Shimada

Quantity of logical function

It increases dramatically in proportion to the
number of values

28 = 256 in 3-value function
216 = 65536 in 4-value function
232 = 4294967296 in 5-value function
264 (≒ 1.8×1019) in 6-value function

Too hard to check all of them even if we use computer!

Let’s consider how to reduce number of logical
functions

Hardware Design I (Chap. 2) 72
Computing Architecture Lab.

Hajime Shimada

Symmetry logical function

Quantity of logical function becomes 2n+1 if the
function has perfect symmetry

The outputs do not change under permutation of all
variables
e.g. x’1・x2・x3+x1・x’2・x3+x1・x2・x’3

Example of symmetry: f(x1,x2) = x1 + x2 (= x2 + x1)
Example of not symmetry: f(x1,x2) = x’1 + x2 (≠ x’2 + x1)

The logical function is symmetry on xi and xj if outputs
do not change under permutation of xi and xj

