Outline
Hardware Design | Chap. 2

Combinational logical circuit

Basis of logical circuit, logical Logic gate (logic element)
. . . Definition of combinational logical circuit
expression, and logical function How to create output signal?
Logical function
Computing Architecture Lab. Definition of logical function
.. . Relationship between logical circuit
Hajlme Shimada Logical expression
E-mail: Shimada@is.naist,jp Definition of logical expression

Minterm and maxterm
Axiomatic systems
Amount of logical expression

1 @ e e, Hardware Design | (Chap. 2) 2
Review: outlined flow of LS| design Relationship between technical terms
Define specification
Definition in hardware description language L]
Architectural design fu?w%lt(i::n
@ Logic synthesis
Circuit with basic logic gates Tocicai T
crie

Logical

¢ In this section,
expression 2

Logical design This chapter treats
@ Place and route this area
circuit 2

Mask pattern +Logical function please assume
f ; +Logical expression : . combinational
Physical design 9 P : ' logical circuit

Manufacturing — - . -
If we minimize logical expression, we can implement

minimized logical circuit

Computing Arcitecture Lab) Computing Arciecture Lab)
@ " ajme Shimada Hardware Design | (Chap. 2) 3 @ e Shimada Hardware Design | (Chap. 2) 4

Detailed talk of logical design Logic gate (logic element)

Specification of sequential machine The electric circuit witch outputs result of logical
operation

Specification of logical function |-> later Chap. 2 e.g. NOT, NAND

Both inputs and outputs can only take 0 or 1

i i NAND gate | | ircui
Logical expression |-> later Chap. 2 NOT gate _DO— Circuit symbol
+Simplify of two level logic Circuit symbol l> O

PaN
+Simplify of multi level logic Pa o
0 1 1
Simplified logical expression X «E L Q X ‘EE_»% X ‘E{ @
= = y

= Basic logic gates
-> Chap. 1

Computing Arcitecture Lab) Computing Arcitecture Lab)
@ " ajme Shimada Hardware Design | (Chap. 2) 5 @ e Shimada Hardware Design | (Chap. 2) — 6

NOT, AND, and OR on Boolean algebra

Logical circuit operates on Boolean algebra
Here’s basic logic from Boolean algebra

AND OR
NOT xyl Q xyl Q
X 00 O 00 O
011 01 0 01 1
110 10 0 10 1
11 1 11 1
X X
Y e Y y
e i Hardware Design | (Chap. 2) 7

NOT, AND, and OR on Venn diagram

In some case, imaging Venn diagram helps
understanding

NOT: left area

AND: shared area

OR: sum of area

O O @A

A A A-B A+B

Hardware Design | (Chap. 2) 8

@ Computing Architecture Lab.
Hajime Shimada

NAND and NOR on Boolean algebra
Physical implementation is easy

Usually, AND and OR are implemented by combining
NOT and NAND/NOR

NAND NOR

The circle
represents negation

C ting Architecture Lab. .
@ e Shimada Hardware Design | (Chap. 2) 9

Combinational logical circuit

The signal flow must be contra flow
The output of the gate will be defined from input
side
The output is defined with current input
No loop in it
It is also called “acyclic circuit”

-
2 =
2 3
Signal flow
@ e i Hardware Design | (Chap. 2) 10

Let’s assume looped logic circuit (1/2)

It sometimes gives unstable output

Let's assume 1 is inputted under 0 output status
o

0

Input 1 1 1] Output

Let's assume 1 is inputted under 1 output status
1
1

Input T 0

0| Output

The output switches 0/1 forever!!! ->oscillator

Computing Architecture Lab.

Hajime Shimada

Hardware Design | (Chap. 2) 11

Let’s assume looped logic circuit (2/2)

We rarely achieve stable circuit with looped
combinational circuit
Let's assume 1 is inputted under 1 output status
It continues to output 1

1
Input 1 0

Once input falls to 0, the output changes to 0 forever

N

Output
>

1->0 >0

Output
>

Input
P 0 0->1 How to crate loop?
- -> Sequential circuit
‘ Usually, they are rare and utilization is limited... ‘ (Chap. 6)

Computing Architecture Lab.

Hardware Design | (Chap. 2) 12

Hajime Shimada

Definition of combinational logic with
directed graph

Set of vertices: V={a, b, ¢, d, e, f, g, h}
Set of edges: ES(V X V)

E={(a.e), (b.e), (b,d), (c,f), (d.f), (e,9), (f.9), (9.h)}
Label of vertex: NOT, NAND, and so on

a O e NAND

C

Computing Architecture Lab.

Hajime Shimada

Hardware Design | (Chap. 2) 13

If you felt “what is directed graph?” ...

Please relearn “graph theory”
The sets of vertices and edges
e.g. network connection graph, schematic diagram, ...
Specific graph: tree, directed graph, weighted
graph, ...
It is widely used in informatics world
Syntax tree (compiler)
Markov chain (voice recognition)
Perceptron (neural network)

@ Cw"ﬂ‘;‘%;’;"g;“;;;; Hardware Design | (Chap. 2) 14

About technical terms of set theory

Set
Gathered set of elements
eg.{0,1},{a, b, ..., z}, ...
Cartesian product
A set of ordered pairs of elements
Notation: A X B (A,B: set)
e.g.{0, 1} x {a, b} ={(0,a), (0,b), (1,a), (1,b)}
Other notation: V2, {0, 1}

Hardware Design | (Chap. 2) 15

@ Computing Architecture Lab.
- Hajime Shimada

The syntax of combinational logic from
graph theory

Directed Acyclic Graph (DAG): (V, E)
V: set of vertices
E: set of edges, subset of (V x V)

(V % V) denotes set of Cartesian product
Allocate logic gate (e.g. NAND) label to vertices
Allocate 1 label to 1 vertex

Hardware Design | (Chap. 2) 16

@ Computing Architecture Lab.
- Hajime Shimada

Terms of combinational logic (1/3)

Fan-in: a input side of edge
e.g. v, is the fan-in of edge (v4, v,)
Viewpoint from the v, side

Fan-out: a output side of edge (v, Vy)
e.g. v, is the fan-out of edge (v, v,)

a O\? NAND primary
O\NAND output
b Qs noT _
ot ONeT Of//v();»Qh
cO NAND
primary input fan-in

@ Computing Architecture Lab.
- Hajime Shimada

fan-out

Hardware Design | (Chap. 2) 17

Terms of combinational logic (2/3)

Primary input: a vertex which does not have fan-

in
Primary output: a vertex which does not have
fan-out

a O\? NAND primary

NAND output

> Cma Mot

p —_— Q%’ g h
O fan-out
c NAND
primary input fan-in

@ e i Hardware Design | (Chap. 2) 18

Terms of combinational logic (3/3)

Path: a set of edges from primary input to
primary output

e.9. (V4, V2) (Va, V3) .. (Vog, Vi)

v, is transitive fan-in

v, is transitive fan-out

e NAND primary
O<//” \N.AND 5“‘)[”
ath NOT h
N AND fan out
prlmary input fan-in
@ Cw"ﬂ‘;‘%;’;"g;“;;;; Hardware Design | (Chap. 2) 19

Value allocation to logic circuit

Value allocation
Allocate 0/1 value to (output of) each vertex
Adequate allocation: satisfies the truth of gate
The allocation will be defined if all of primary
input has defined
It is also called logic simulation
Adegquate allocation Not adequate allocation

a@ NAND a@ NAND

" o

20

b @NoT_

Computing Architecture Lab. .
@ Hajime Shimada Hardware Design | (Chap. 2)

The algorithm of value allocation

Define the value of primary inputs
Primary inputs are called level 0 vertices

Define the value of level 1 vertices
Level 1 vertices: all inputs of them are primary input
All inputs value are already defined in 1.

Define the value of level 2 vertices

Level 2 vertices: all inputs of them are less than level 1 (level 0
or1)

Define level n vertices until the all of the vertices have
defined

Level n vertices: all inputs of them are less than level n-1

@ e i Hardware Design | (Chap. 2) 21

Example of value allocation (1/4)

Allocate value to primary inputs (level O vertices)
We can allocate them without constraint
Usually, they are given

Level 0 Level 1
Level 3

a e NAND
@ NAND

b ()_.Q
O NOT O/
c @/ NAND

Level 2

@ e i Hardware Design | (Chap. 2) 22

Example of value allocation (2/4)

Allocate values to level 1 vertices
Which are only connected to primary inputs

Level O Level 1

l \ Level 3
NAND
2@ S \NAND
\

@ NOT O/(D)
/ NAND

Hardware Design | (Chap. 2) 23

b

Level 2

@ Computing Architecture Lab.
- Hajime Shimada

Example of value allocation (3/4)

Allocate values to level 2 vertices
Which are only connected to less than level 1 vertices
See the vertices which values have already allocated

Level O Level 1
Level 3

o [Nwe',,
b @NOT ®>Q—Q
/NAND

Level 2

Hardware Design | (Chap. 2) 24

@ Computing Architecture Lab.
- Hajime Shimada

Example of value allocation (4/4)

Allocate value to level 3 vertices
Which are only connected to less than level 2 vertices

The allocation of primary outputs are the same to the
prior vertices
Level 0 Level 1

l \ Level 3

Short exercise

Allocate values to left vertices
If you left time, add level notations to the vertices

\‘NAND -
%A@ZQ\(}O

m‘<>\.C>/v/'

NAND
b O / NAND
@ NOT /H
/ @ NAND
NAND Level 2
@ prﬂ‘;"?,ﬁ';""sﬁ“ﬁ;:; Hardware Design | (Chap. 2) 25 @ Computng Arctiectre Lab Hardware Design | (Chap. 2) 2
The answer of short exercise Outline
Combinational logical circuit
Level 5 Logic gate (logic element)
NAND Definition of combinational logical circuit
\W’@\L‘i}f;\ﬁj How to create output signal?
Level 2 NAQ')\I>D/ @ — @ Logical function
@ \ NAND Definition of logical function
®\L9V9‘ 3/'/~ Relationship between logical circuit
a / NAND Logical expression
Level\ @ NAND Level 5 Definition of logical expression
NAND Mu.wterm.and maxterm

Level 2 Axiomatic systems

Amount of logical expression

@ Compuing Mt Lo Hardware Design | (Chap. 2) 27 @ ™ agme Shimada Hardware Design | (Chap. 2) 28

Definition of logical function from
mathematical viewpoint

Representation of the relationship between input
value and output value
The definition of n-value logical function:
Projection from {0, 1}" to {0, 1}
Subset f € {0, 1}" x {0, 1} which does not include
both (X, 0) € fand (X, 1) € fin arbitrary X
We denote ity = f(X) if (X, y) € f
{0, 1}"is called domain
{0, 1} is called codomain

@ e i Hardware Design | (Chap. 2) 29

Example of definition of 3-value
logical function (notated by logical circuit)

It outputs 0 if we input (0, 0, 0) into it
It outputs 1 if we input (0, 0, 1) into it | Thisis

logical function!

It outputs 1 if we input (1, 1, 1) into it

Inputs
Output

Hardware Design | (Chap. 2) 30

@ Computing Architecture Lab.
- Hajime Shimada

Examples of definition of representative
logical function

The function of NOT < {0,1} x{0,1}
{(0,1), (1, 0)}
The function of AND < {0,1}2x{0,1}
{((0,0), 0), ((0, 1), 0), (1, 0), 0), ((1, 1), 1)}
The function of AND < {0,1}2x{0,1}
{((0,0),0), ((0, 1), 1), (1, 0), 1), ((1, 1), 1)}
S

Input Output

Hardware Design | (Chap. 2) 31

@ Computing Architecture Lab.
Hajime Shimada

Hot to denote them in usual?

Usually, we do not use mathematical definition

We usually use following notations
Logical circuit
Truth table
Logical expression

@ Cw"ﬂ‘;‘%:‘e"ée;“;;;; Hardware Design | (Chap. 2) 32

Truth table

One of the representation style of logical
function

Aligning output values for all possible inputs
The size of n values logical function is 2"

Xy Xo ‘ f(x.%;) ‘g(xlvxz)‘ h(x1.X)
00 0 0 h(0, 0) Iftruth tables of two
01 0 1 h(0, 1) functions are identical,
10 0 1 h(1, 0 the functions are
1 1 1 0 h(1‘ 1) identical
Logical function %T:“f:r: S(;:S Truth table
Compuling Architecture Lab Hardware Design | (Chap. 2) 33

Hajime Shimada

Relationship between logical function and
logical circuit

Logical function represents the relationship of
input value and output value in combinational

logical circuit
—‘ Logical function y

Xz Many correspondlng
(8]0

11 1| Truth table

Relationship
of input/output

3 ; Computing Architecture Lab.

Haijime Shimada Hardware Design | (Chap. 2) 34

Relationship between technical terms

Specification x_Equal *
}_{ Truth table

&> Logical
function
Logical Logical
expression 1 circuit 1
circuit 5

Logical
expression 2
. any possible

candidates
for these!
If we minimize logical expression, we can implement
minimized logical circuit
@ Computing Architecture Lab. Hardware Design | (Chap. 2) 35

Hajime Shimada

Multiple output logical function

In many case, digital system has multiple
outputs

Usually, we decompose it to multiple single
output function for simplicity

[2]
= 2
Q. >
£ g
— 3
@ © WH'a"»g":eMSEh'imaLS; Hardware Design | (Chap. 2) 36

Truth table of multiple output logical
function

Multiple output function (m outputs):
Projection from {0, 1}" to {0, 1}™
List of m projections from {0, 1}" to {0, 1}

Xy Xo | fo(Xe,Xo) fi(Xq,X)

0 0 0
0 0 1
1 0 1
1 1 0

- O =0

@ Cw"ﬂ‘;‘%;:"g;“;;;; Hardware Design | (Chap. 2) 37

Operation between logical functions

We can extend operation on logical value to
logical function
(f = 9) (X1, Xg, ey Xp) = F(Xq, ooy Xn) * Q(Xyseeny Xn)
(F+9) (X1, Xa, oy Xn) = F(Xg, ooy Xn) + G(Xgyees Xn)
(F) (X1, Xy «oey Xp) = f(X1s Xy ooy Xp)'
Detail is taught in following logical expression
section

@ Cw"ﬂ‘;‘%r’:‘:""se;“;;;; Hardware Design | (Chap. 2) 38

Summary of logical function

It is a function from {0, 1} to {0, 1}
{0, 1} % {0,1} with some constraint

It is represented uniquely with truth table
List of relationship between all inputs and outputs
But it requires 2" size of memory

We can apply operation on it | ogicai function:
The relationship between

) inputs and outputs

@ e i Hardware Design | (Chap. 2) 39

Outline

Combinational logical circuit
Logic gate (logic element)
Definition of combinational logical circuit
How to create output signal?

Logical function
Definition of logical function
Relationship between logical circuit

Logical expression
Definition of logical expression
Minterm and maxterm
Axiomatic systems
Amount of logical expression

@ e i Hardware Design | (Chap. 2) 40

Logical expression

One of the expression of logical function

Represent it with arrangement of variable which
denotes logical function

eg.x+tyz+xy-z
Efficient than truth table
But there’s no uniqueness
X =a+b; y=c-d; z=x+y -> z=(atb) + (c-d)

i Drpe B,
° ¢ ey
y d y

d
@ e i Hardware Design | (Chap. 2) 41

The definition of logical expression

Logical variables are logical expression
e.0.X,Y,Z, Xq, X, 8, b, ...

If E, and E, are logical expression,

(E4-E,), (E4*+Ey), (E{") are logical expression
e.g. (x-y), (x+y), (x+(y-2)), (x+(y")

Generated in recursively
We can omit brackets by adding order to

operations
Order: ', =, and +

@ e i Hardware Design | (Chap. 2) 42

The expression of logical function with
logical expression (1/2)

Pay attention to the logical function which has
only one “1” output in truth table

Called minterm

Minterm can be represented by AND and NOT

Minterm
A

e ~N
Xy ‘ Xy ‘x’-y ‘ Xy | xy
00 1 0 0 0
01 0 1 0 0
10 0 0 1 0
11 0 0 0 1

@ Cw"ﬂ‘;‘%;’;"g;“;;;; Hardware Design | (Chap. 2) 43

The expression of logical function with
logical expression (2/2)

The logical function which has multiple “1”
output is represented by OR of minterms

The arbitrary function can be represented with
AND, OR, and NOT of logical variable

Minterm
A
r)
xy | Xy [Xoy | xy [xoy| fxy) = xey + xey
00 1 0 0 0 0
01 0 1 0 0 1
10 0 0 1 0 1
11 0 0 0 1 0
@ Cw"ﬂ‘;‘%;’;"g;“;;;; Hardware Design | (Chap. 2) 44

Notation only 2-input NAND or NOR

We can represent NOT, AND, and OR with
NAND gates by following wire connection
Called “NAND has functional completeness”

Similar representation can be done with only
NOR gates

NOT with NAND AND with NAND OR with NAND

O DD D

See De Morgan’s law in later

@ e i Hardware Design | (Chap. 2) 45

Sum of products

Definition
Literal: Logical value or the negation of logical value
a: positive literal
a'": negative literal
Create term with AND of literals
Create logical expression with OR of 1.
e.g. abc + a'b'c + ac, ac + bc + ad'e
Other names: AND-OR type, two level logic
The sum of minterms has special name
->Disjunctive Normal Form (DNF)

@ e i Hardware Design | (Chap. 2) 46

Disjunctive Normal Form (DNF)

Sum of minterms without same minterm
Arbitrary logical function can be expressed with DNF

a b‘ \ f g abc h s t
00| ab'|0 1 000labc|0 0 1
01| ab |1 0 001 abc|1 1 1
10 ab |1 0 010 abc|0 0 O
11, ab | 0 1 011 abc |1 1 0
100{abc |0 0 O
f =ab +ab’ 101 abc |1 1 0
— o'k’ 110 abc |1 0 1
g=ab'+ab 111 abc [0 1 1

h=ab’c+abc +ab’c + abc’

s=ab'c+abc +ab’c+abc

t=ab’c’+ab’c+abc’ +abc

@ Compuling Architecture Lab Hardware Design | (Chap. 2) 47

Hajime Shimada

Product of sums

Definition
Create term with OR of literals
Create logical expression with AND of 1.
e.g. (a+b'+c) (a'+b+c)(d+e')
There’s a counterpart notation of DNF
->Conjunctive Normal Form (CNF)
Sum of maxterms

Maxterm: the logical function which has only one “0”
output in truth table

Hardware Design | (Chap. 2) 48

@ Computing Architecture Lab.
- Hajime Shimada

Maxterm

Pay attention to the logical function which has
only one “0” output in truth table

Called maxterm

Maxterm can be represented by OR and NOT

Maxterm
A
r Y
xy | xty [xty | x4y [x+y] fxy) = (xry)x+y)
00 0 1 1 1 0
01 1 0 1 1 1
10 1 1 0 1 1
11 1 1 1 0 0
@ Cw"ﬂ‘;‘%;’;"g;“;;;; Hardware Design | (Chap. 2) 49

Conjunctive Normal Form (CNF)

Sum of maxterms without same maxterm
Arbitrary logical function can be expressed with CNF

ab| [f g abec h s t
00| ab |0 1 000 abc|0 0 1
01| ab|1 0 001 abc|1 1 1
10 ab |1 0 010/ abc |0 0 O
11| ab |0 1 011/ abc |1 1 0
100 abc |0 0 O
f = (@'+b’)(a+b) 101 abg 110
o s 1710 abc |1 0 1
g = (@'+b)(a+b’) 111 abc [0 1 1

h = (atb+c)(a+b’+c)(a'+b+c)(a'+b'+c’)

s = (at+b+c)(a+b’+c)(a’+b+c)(a’+b’+c)

t = (a+b’+c)(a+b’+c’)(a’+b+c)(a’+b+c’)

@ Computing Architecture Lab. Hardware Design | (Chap. 2) 50

Hajime Shimada

Symbol simulation

A method to obtain logical expression from
logical circuit
Propagate symbol from inputs

Operate expression from lower level

->Similar to value allocation

Simplify this
@ I (a-by with latter technique
b@D > |
R ((a=b)'=(b'-c)")
c (b'-c)
@ Computing Architecture Lab. .
A Hajime Shimada Hardware Design | (Chap. 2) 51

Simplify with operation on Boolean
algebra

The logical expression given from symbol
simulation has complexity

e.g. ((a*b)-(b'-c))
How to simplify them?

Simplify with operation on Boolean algebra
General operation rule
De Morgan'’s law
Shannon's expansion

@ e i Hardware Design | (Chap. 2) 52

Axiomatic systems related simplification
on Boolean algebra

General operation rules Venn diagram

Idempotent: a+a = a
Commutativity: a+b = b+a
Associatively: (a+b)+c = a+(b+c)
Absorption: a+(a*b) = a
Distributive: (a+b)-c = a-ct+b-c
Involution: (a')' = a
Complements: a+a' = 1

Identity: a-1=a

Domination: a-0 =0

C ting Architecture Lab. .
e Shimada Hardware Design | (Chap. 2) 53

@ De Morgan's law: (a+b)' = a'-b’

Axiomatic systems related simplification
on Boolean algebra

Duality

The rule that exchanged “+ and +” and “0 and 1” will
be approved (Dual rule)

eg.ata=a «—— a-a=a

eg.ata'=1<+— a-a'=0
We can insert arbitrary logical expressions into a,
b, and c in prior equations

Hardware Design | (Chap. 2) 54

@ Computing Architecture Lab.
- Hajime Shimada

Review: 2-input logical operation

AND, OR, NAND, and NOR: described before
XOR: output 1 if the inputs are not equal
XNOR: output 1 if the inputs are equal

AND| OR | NAND | NOR XOR XNOR
Xy | xy|xty | (xy) | (xty) | x®y | xDy)
00| 0O 1 1 0 1
01 0 1 1 0 1 0
10 0 1 1 0 1 0
11 1 1 0 0 0 1
@ Cw"ﬂ‘;‘%;’;"g;“;;;; Hardware Design | (Chap. 2) 55

De Morgan’s law
(x=y) =x"+y’
(x+y) =x"-y
We can insert arbitrary logical expressions into x
and
y Equal Egl
Xy ‘(x-y)' X'+y'| (x+y)| Xy’
00| 1 1 1 1
01 1 1 0 0
10| 1 1 0 0
11] 0 0 0 0
@ Cw"ﬂ‘;‘%;’;"g;“;;;; Hardware Design | (Chap. 2) 56

De Morgan's law on Venn diagram

Here’s (x-y)' = X'+y' on Venn diagram

D

X-y (x=y)

y

X
C Archi Lab. .
@ O e Shimade Hardware Design | (Chap. 2) 57

De Morgan's law on circuit level

NAND and NOR becomes AND and OR with
negated inputs

(x=y) =x'+y
D=1
(xt+y)y =x"-y

1> =1

@ e i Hardware Design | (Chap. 2) 58

A practical use of De Morgan’s law on
circuit level

NAND-NAND two level logic circuit
= AND-OR two level logic circuit

1. Apply De Morgan’s law into
latter NAND gate
2. Add involution rule

@ e i Hardware Design | (Chap. 2) 59

Generalized De Morgan’s law

F'(Xqs Xa, 7 77 Xq) = G(Xq, Xp, 7 7 7, Xp)

Under = Xi «—Xi'
+ — "
Widely used when you want to negate arbitrary
logical function f
e.g. (ab'+a’b+ab’) = (atb)(a+b’)(@'+b)
= aaa’'+aab+ab’a’+ab’b+baa’+bab+bb’a’+bb’b

=ab+ab=ab
e.g.((a*b)-(b'-c))’ =(a-b) + (b'-c)=a-b +b'-c

Hardware Design | (Chap. 2) 60

@ Computing Architecture Lab.
- Hajime Shimada

10

How to create CNF?

Short exercise

Gain DNF of negated function Show CNF of following 8 8 8 ‘13 1
Sum of “0” term in truth table logical function 0010]| 0
Negate function obtained in 1. g ‘1) (1) (1)]
abec h s t 0101 1
000|abc|0 0 1 h =a'b’c’ + a’bc’ + ab’c’ + abc 0110 1
001 abc|1 1 1 0111| 0
010/ abc |0 0 0 ﬂ 188?]
100 abe |0 0 o N=(@bc+abe +abc +aboy 1010/ 1
101/abc [1 1 0 : 1011| 1
110:bcc‘ 1o 1 @DeMorganslaw 1100 1
111 abc [0 1 1 h=(atb+c)(atb+c) 1 1 (1):) (1)
@ (a’+tb+c)(a’+b’+c’) @ 11111 1
O e Shimada Hardware Design | (Chap. 2) 61 Computng Arctiectre Lab Hardware Design | (Chap. 2) 62
How to translate logical expression to
Answer
sum of products or product of sums
Show CNF of following g 8 8 (1) 1
logical function 0010l o h=a'(b'c + bc) + b'c’ ~ I = (@(b'c + bo) + b))
0011 1 Negate
0100/ 1 @E Expand
xpand
f =ab'cd + a’bed + abed’ 0101} 1 b = ab + 8G + be’
f=f=(abcd +abed + abed) I h=abc+abc+bc Sabrac+he
= (at+b+c'+d)(a+b’+c'+d’)(a'+b'+c'+d) 1000 1 =a’c+b’c ﬂNegate
Sum of products
1001 1 _rZ "y
1010 1 h”=h = (ab + ac + bc’)
1011| 1 .
1100/ 1 Note that the expansion De Morgan'’s law
1101] 1 route is not unique h = (@+b')(@+c’)(b’+c)
1 1 1 (1) (1) Product of Sums

C ting Architecture Lab. .
@ e Shimada Hardware Design | (Chap. 2)

=
@

@ e i Hardware Design | (Chap. 2) 64

Shannon’s expansion

A technique also used for translating logical
expression to sum of products notation

‘ f(Xq, Xg0 777 X)) = X" = 10, Xy, == %, X)) + Xg = f(L, Xy, =77, Xp)

e.g. (a’b’+a’b+ab’y
=a'((1-b+1-b+0-b’))+a((0-b+0-b+1-b’)’)
Substitute a=1

Substitute a=0
=a'((b'+b))+a((b'))
=1
= a'(0)+a(b”) = ab

@ e i Hardware Design | (Chap. 2) 65

Short exercise

Expand following function by Shannon’s
expansion and translate it to sum of products

f={(a-b)-(b'c)}

@ e i Hardware Design | (Chap. 2) 66

11

Answer

Expand following function by Shannon’s
expansion and translate it to sum of products

f={(a-b)'-(b'-c)}
f=a'{(0:b) - (b"-c)Y +a-{(1:b)(b"-c)}
=1 =

=a'{(b"c)Y +a-{b"(b'c)}

=b-[a-{(1-c)}Y +a-{1-(1-¢)Y] + b-[a’-{(0-c)} + a-{0-(0-c)}
=c =c =0 =1

b’-(@’*c +a-c)+b-a

a +a)b-c+a-b=a'b+b’-c

@ Computing Architecture Lab.
Hajime Shimada

Hardware Design | (Chap. 2) 67

Equivalence of logical function

There are equivalent logical expression in each
logical function

In logical circuits design, there’s possibility that it
includes same circuits (= same logical expression)

-> Redundant! (consume unnecessary silicon resources)
How to check equivalence of them?

Checking on truth table is one method
The size of truth table is 2" on n-value
Cogitated algorithm or data structure are required

-> Later Chap. 2

Hardware Design | (Chap. 2) 68

@ Computing Architecture Lab.
Hajime Shimada

Quantity of logical function

The logical function can be represented uniquely with
truth table

But there are 22" of logical functions in n-value logical
function

Examples of 2-input logical function

There’s possible functions which are not named
But usually, there’s no use

AND| XOR
There are 24 possible outputs XYy | xy x@y‘ =x)| (=0) ‘ (=y) ‘ =1

00| O 0 1 0 0 1
x v | o1[o0| 1 | o | o 1 1
0000000000111 11111 10 0 1 1 0 0 1
01]0000111100001111 11 1 0 0 0 1 1
10/{0011001100110011
11/0101010101010101

@ Compug Achiscurs b Hardware Design | (Chap. 2) 69 @ e i Hardware Design | (Chap. 2) 70

Quantity of logical function

It increases dramatically in proportion to the
number of values

28 = 256 in 3-value function

216 = 65536 in 4-value function

232 = 4294967296 in 5-value function

264 (= 1.8 x 10"9) in 6-value function

Too hard to check all of them even if we use computer!

Let’s consider how to reduce number of logical
functions

@ e i Hardware Design | (Chap. 2) 71

Symmetry logical function

The logical function is symmetry on x; and ; if outputs
do not change under permutation of x; and x;

Example of symmetry: f(x;,X,) = X; + X, (=X, + Xq)
Example of not symmetry: f(x4,X,) = X'y + X, (# X'+ X)

Quantity of logical function becomes 21 if the
function has perfect symmetry

The outputs do not change under permutation of all
variables

€.9. X'y "Xy XgHXy X'y Xg+Xq X, X3

@ e i Hardware Design | (Chap. 2) 72

12

