
1

1

Hardware Design I Chap. 3
Minimization of two level logic

Computing Architecture Lab.
Hajime Shimada

E-mail: shimada@is.naist.jp

Hardware Design I (Chap. 3) 2
Computing Architecture Lab.

Hajime Shimada

Outline

Why we have to minimize logic size
Relationship between logical expression size and
hardware
Delay and hardware cost on FET

Minimizing logical expression method
Minimize on Boolean algebra
Karnaugh map
Quine-McCluskey algorithm

Hardware Design I (Chap. 3) 3
Computing Architecture Lab.

Hajime Shimada

Relationship between logical expression
and logical circuit

The number of gates increase in proportion to
the number of literals

Assuming 2-input gates
Do not consider cost of NOT gates

h = a’b’c + a’b c + a b’c + a b c’ 12 literals

11 gates

Hardware Design I (Chap. 3) 4
Computing Architecture Lab.

Hajime Shimada

Multiple input CMOS NAND gates (1/2)

Serial connection of nMOS increases in proportion to the
number of inputs

x
Q

y

z

x

y

z

Q

w

4-input NAND
3-input NAND2-input NAND

Resistance
increases

x
Q

y

Hardware Design I (Chap. 3) 5
Computing Architecture Lab.

Hajime Shimada

Multiple input CMOS NAND gates (2/2)

Discharge speed of 4-input NAND is
half of that of 2-input NAND

Resistance: x2
Current: x1/2

Usually, we extend gate width of FET to
reduce resistance

But it gives additional capacitance Q

4-input NAND

Resistance
increases

2-input NAND

x
Q

y
Hardware Design I (Chap. 3) 6

Computing Architecture Lab.
Hajime Shimada

Gate width of FET

We can choose several gate width of FET
We can choose channel width of FET
Enlarge channel width = Enlarge current conducting
capacity

But it gives additional capacitance of gate and
diffusion area

Top view of nMOS FET
Drain

Source

Current

Gate Current x3Gate width x3

Capacitance x3

Used for
•Reduce resistance
•Drive many outputs

2

Hardware Design I (Chap. 3) 7
Computing Architecture Lab.

Hajime Shimada

Operation delay of logic gates

Voltage-time graph of NOT logic gate

The gate delay slightly differs between
semiconductor process technology

Shrinked technology is faster
Some techniques to improve transistor: strained
silicon, SOI, etc...

t

V
Input value

Output value

Threshold voltage

Gate delay

Hardware Design I (Chap. 3) 8
Computing Architecture Lab.

Hajime Shimada

Normalized delay of logic gates

Gate delay differs with several parameters
Semiconductor process technology
Number of outputs (≒ gate width)

FO4 inverter delay
The delay of the NOT gate which can drive 4 same
NOT gate
An technology independent delay notation
e.g.

NOT gate which can drive 8 outputs: 1.2 FO4
NAND gate which can drive 4 outputs: 1.5 FO4
NAND gate which can drive 8 outputs: 1.7 FO4

Hardware Design I (Chap. 3) 9
Computing Architecture Lab.

Hajime Shimada

Logic depth reduction with balanced tree

We can reduce logic depth by balanced tree
Number of logic gates = (number_of_literals – 1)
Logic depth ∝ log (number_of_literals)

a b c d e f g h
a b c d e

Serial connection Balanced tree

Hardware Design I (Chap. 3) 10
Computing Architecture Lab.

Hajime Shimada

Why we have to create minimized circuit?

To reduce silicon die size
Large circuit requires large silicon to place gates

To create faster circuit
Large circuit increases capacitance and resistance
which gives long charge/discharge time

Want to create smaller logical circuit

Want to create smaller logical expression

Hardware Design I (Chap. 3) 11
Computing Architecture Lab.

Hajime Shimada

Example of combinational logic design

1. (Write truth table)
2. Write logical expression
3. Simplify logical expression

a b cin cout sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

cout = a' b cin + a b' cin + a b cin' + a b cin
sum = a' b' cin + a' b cin' + a b' cin' + a b cin

cout = (a' b + a b') cin + a b
sum = cin (a' b' + a b) + cin' (a' b + a b')

Simplify Including multi level
circuit viewpoint
-> see Chap. 8

Specification

Hardware Design I (Chap. 3) 12
Computing Architecture Lab.

Hajime Shimada

Outline

Why we have to minimize logic size
Relationship between logical expression size and
hardware
Delay and hardware cost on FET

Minimizing logical expression method
Minimize on Boolean algebra
Karnaugh map
Quine-McCluskey algorithm

3

Hardware Design I (Chap. 3) 13
Computing Architecture Lab.

Hajime Shimada

Minimize on Boolean algebra

The rule used for simplification
Idempotent: a+a = a
Distributive: (a+b)・c = a・c+b・c
Complements: a+a' = 1
Identity: a・1 = a

e.g. f = a'bc + a'bc' + abc' + abc
= a'bc + abc + a'bc' + abc'
= (a'+a)bc + (a'+a)bc' = 1bc + 1bc' =

= bc + bc' = b(c+c') = 1b =b
=1(Complements) Identity

Hardware Design I (Chap. 3) 14
Computing Architecture Lab.

Hajime Shimada

Problems in minimizing on Boolean
algebra

Comparatively hard to determine what rule
simplifies the logical expression
Hard to determine what rule must be applied for
final goal

Usually, following method is widely used
Hand optimizing -> Karnaugh map
On EDA -> Quine-McCluskey algorithm

Hardware Design I (Chap. 3) 15
Computing Architecture Lab.

Hajime Shimada

Outline of Karnaugh map (1/3)

2-dimension notation of truth table
Consecutive value can apply complements rule

With special order (gray code: 00, 01, 11, 10)
Group them with rectangle to apply complements rule

ab c 0 1
00 0 0
01 1 1
11 1 1
10 0 0

a'bc

abc
abc'

a'bc'
ab c 0 1
00 0 0
01 1 1
11 1 1
10 0 0

a'b

bc
bc'

a'b

e.g. f = a'bc + a'bc' + abc' + abc = (a'b + a'b) or (bc + bc')

Hardware Design I (Chap. 3) 16
Computing Architecture Lab.

Hajime Shimada

Outline of Karnaugh map (2/3)

We can extend group size to apply complements
rule further

The size of group must be 2n

e.g. f = (a'b + ab) or (bc + bc') = b

ab c 0 1
00 0 0
01 1 1
11 1 1
10 0 0

ab

bc
bc'

a'b

ab c 0 1
00 0 0
01 1 1
11 1 1
10 0 0

b

Hardware Design I (Chap. 3) 17
Computing Architecture Lab.

Hajime Shimada

Outline of Karnaugh map (3/3)

We can share a minterm between groups

If we input (a,b,c)=(0,1,1), f = b+ac' = 1+1 = 1
You have to select least groups

e.g. f = a'bc + a'bc' + abc' + abc + a'b'c = b + a'c

ab c 0 1
00 0 1
01 1 1
11 1 1
10 0 0

ab

bc
bc'

a'b

ab c 0 1
00 0 1
01 1 1
11 1 1
10 0 0

b

a'c a'c

Hardware Design I (Chap. 3) 18
Computing Architecture Lab.

Hajime Shimada

Gray code

A binary notation which only flips 1-bit in
consecutive values

Usual binary
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000

Gray code
0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100

Assume mirrored order for lower bits after carry
0, 1, 11, 10, 110, 111, 101, 100, 1100

1-bit flip 2-bit 1-bit 3-bit 1-bit 2-bit 1-bit 4-bit

1-bit flip 1-bit 1-bit 1-bit 1-bit 1-bit 1-bit 1-bit

4

Hardware Design I (Chap. 3) 19
Computing Architecture Lab.

Hajime Shimada

4-value Karnaugh map (1/3)

Please assume following edges are connected
Top edge and bottom edge
Left edge and right edge

ab cd 00 01 11 10

00 1 1 0 1
01 1 1 0 1
11 0 0 1 1
10 1 1 0 1

Consecutive through edge

ab cd 00 01 11 10

00 1 1 0 1
01 1 1 0 1
11 0 0 1 1
10 1 1 0 1

b'c'd ab'd'
Hardware Design I (Chap. 3) 20

Computing Architecture Lab.
Hajime Shimada

4-value Karnaugh map (2/3)

Example of 4-content group through edges
Watch out for a group which is consisted with 4
corners

Consider 8-content group if it is possible
ab cd 00 01 11 10

00 1 1 0 1
01 1 1 0 1
11 0 0 1 1
10 1 1 0 1

ab cd 00 01 11 10

00 1 1 0 1
01 1 1 0 1
11 0 0 1 1
10 1 1 0 1

b'd'a'd' b'c'

Hardware Design I (Chap. 3) 21
Computing Architecture Lab.

Hajime Shimada

4-value Karnaugh map (3/3)

Considering least groups becomes more
important

ab cd 00 01 11 10

00 1 1 0 1
01 1 1 0 1
11 0 0 1 1
10 1 1 0 1

abc

cd'

a'd'

b'c'

a'c'

b'd'

ab cd 00 01 11 10

00 1 1 0 1
01 1 1 0 1
11 0 0 1 1
10 1 1 0 1

abc

cd'

a'd'

b'c'

a'c'

b'd'

e.g. f = a'c' + b'c' + cd' + abc

Hardware Design I (Chap. 3) 22
Computing Architecture Lab.

Hajime Shimada

Prime implicant

Prime implicant
A largest product term which covers "1" area on truth
table

Essential prime implicant
The prime implicant that covers some "1" area which
has not covered by the other prime implicant
Must be chosen in first procedure when you are trying
minimization of logical expression

Hardware Design I (Chap. 3) 23
Computing Architecture Lab.

Hajime Shimada

Example of prime implicant

a'c', b'c' and abc are
selected as prime implicant

a'bc'd is only covered by a'c'
ab'c'd is only covered by b'c'
abcd is only covered by abc

Repeat similar operation
But sometimes it becomes
set cover problem which is
NP-complete problem

ab cd 00 01 11 10

00 1 1 0 1
01 1 1 0 1
11 0 0 1 1
10 1 1 0 1

abc

cd'

a'd'

b'c'

a'c'

b'd'

Hardware Design I (Chap. 3) 24
Computing Architecture Lab.

Hajime Shimada

5-value Karnaugh map

The order of variables is as follows
000, 001, 011, 010, 110, 111, 101, 100

Assume that values which exist mirrored position
from center are consecutive

000 001 011 010 110 111 101 100
00
01 1 1
11 1 1
10

Consecutive
a'bc'd'e + a'bcd'e = a'bd'e

ab
cde

bd'e

5

Hardware Design I (Chap. 3) 25
Computing Architecture Lab.

Hajime Shimada

6-value Karnaugh map

Assume mirror to the center of vertical position
The end of Karnaugh map

It requires another dimension if we increase values
000 001 011 010 110 111 101 100

000
001 1 1
011
010
110
111
101 1 1
100

abc
def

Consecutive
a'b'cde'f

+ ab'cde'f
= b'cde'f

b'ce'f
Hardware Design I (Chap. 3) 26

Computing Architecture Lab.
Hajime Shimada

Short Exercise

Show simplified logical expression of following
logical function with Karnaugh map
x y z f(x, y, z)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Hardware Design I (Chap. 3) 27
Computing Architecture Lab.

Hajime Shimada

Answer

yz x
00
01
11
10

0 1
0 0
1 1
1 1
1 0

z

x'y

f(x, y, z) = x'y + z

xy z
00
01
11
10

0 1
0 1
1 1
0 1
0 1

z

x'y

zy x
00
01
11
10

0 1
0 0
1 0
1 1
1 1

z

x'y

Hardware Design I (Chap. 3) 28
Computing Architecture Lab.

Hajime Shimada

Outline

Why we have to minimize logic size
Karnaugh map
Quine-McCluskey algorithm

Hardware Design I (Chap. 3) 29
Computing Architecture Lab.

Hajime Shimada

Quine-McCluskey algorithm

An algorithm to get all prime implicant
Nearly brute force method

Algorithm
1. Translate minterm which outputs 1 to binary notation
2. Sort with number of "1" in notation
3. Create level (i+1) from level i

Select term pair which has only one different bit
Move it to level i+1 with translating differ point to *
Add flag to used term
Finish if there's no level i+1

4. (Select essential prime implicant)

Hardware Design I (Chap. 3) 30
Computing Architecture Lab.

Hajime Shimada

Example of Quine-McCluskey algorithm
(1/3)

Translate minterm which outputs 1 to binary
notation

a'b'c' : 000
a'bc : 011
ab'c : 101
abc' : 110
abc : 111

Treat above list as level 1

a b c f
000 1
001 0
010 0
011 1
100 0
101 1
110 1
111 1

6

Hardware Design I (Chap. 3) 31
Computing Architecture Lab.

Hajime Shimada

Example of Quine-McCluskey algorithm
(2/3)

Sort with number of "1" in notation
Create level 2

Selected from different number of "1" notation group
We can use term redundantly

*11
000
011 x
101
110
111 x

*11
1*1
11*

000
011 x
101 x
110 x
111 x

Level 1
Level 2# of "1" is 0

of "1" is 2

of "1" is 3

Level 1
Level 2

Hardware Design I (Chap. 3) 32
Computing Architecture Lab.

Hajime Shimada

Example of Quine-McCluskey algorithm
(3/3)

Not flagged values are prime implicants
Check essential prime implicants with table

If minterm has only one "1" notation, the prime
implicant is essential

*11
1*1
11*

000
011 x
101 x
110 x
111 x

Level 1
Level 2

*11 1*1 11* 000
000 1
011 1
101 1
110 1
111 1 1 1Prime implicants

Minterms

Prime
implicants

f = bc + ac + ab + a'b'c'

Hardware Design I (Chap. 3) 33
Computing Architecture Lab.

Hajime Shimada

Example of prime implicant cannot be
defined

Sometimes it
becomes set cover
problem

e.g. How to choose
prime implicant to
cover 0010, 0110,
and 1010?
See those topic in
other lecture

0*0* *00* 0**0 *0*0 **10 111*
0000 1 1 1 1
0001 1 1
0010 1 1 1
0100 1 1
0101 1
0110 1 1
1111 1
1110 1 1
1000 1 1
1001 1
1010 1 1

essential

Covered with essential

Hardware Design I (Chap. 3) 34
Computing Architecture Lab.

Hajime Shimada

Short exercise

Show simplified logical expression of following
logical function with Quine-McCluskey algorithm
x y z f(x, y, z)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Hardware Design I (Chap. 3) 35
Computing Architecture Lab.

Hajime Shimada

Answer

001 x
010 x
011 x
101 x
111 x

0*1 x
*01 x
01*
*11 x
1*1 x

**1
Level 1 Level 2 Level 3

of "1"
is 1

of "1"
is 2

of "1"
is 3

of "1"
is 1

of "1"
is 2

**1 01*
001 1
010 1
011 1 1
101 1
111 1

f(x, y, z) = x'y + z

Both of prime implicants
are required

2 prime implicants

Hardware Design I (Chap. 3) 36
Computing Architecture Lab.

Hajime Shimada

How to minimize large hardware?

Simplification ability of Karnaugh map and
Quine-McCluskey algorithm are limited

Karnaugh map can treat until 6 variables
Quine-McCluskey algorithm can treat until around 30
values

Until around 10 variables in 1970's computer

How to design large hardware with them?
Create module which has smaller inputs
Create large hardware by combining modules

In practical use, we use MINI or Espresso

-> Chap. 4

-> Chap. 7

