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Already optimized circuits

There are many optimized circuits which are well
used
You can reduce your design workload
You can use faster one than your design :-P
Some of them has different optimization level
Optimized for logic gates reduction
Optimized for operating speed
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Outline

Data path controlling circuits
Multiplexer/demultiplexer
Buffer/Three state buffer/Bi-directional buffer

Encoder/decoder

Arithmetic circuits
Adder
Comparator/Majority vote
Shifter
Multiplier
Divider

ﬁ COmpﬁt;gin':zhgeﬁiﬁang Hardware Design | (Chap. 4)

Multiplexer (1/2)

A circuit which outputs one of the inputs
Also called “Selector”

e.g. 2-1 MUX (2-input 1-output multiplexer)
Output the value of “in0” if the input of “sel’=0
Output the value of “in1” if the input of “sel’=1

X y X y
l l l l Relationship between
N0 inl N0 inl inputs and output
sel~—0 sel— 1 sel | out
out out 0 | In0
] I 1 inl

X y
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Multiplexer (2/2)

Logical expression of 2-1 MUX:

out = (sel)'(

in0) + (sel)(inl)

Assume that “sel” signal controls

open/close

of AND gate

Truth table of

You can easily to extend logical expression g
to much more inputs with above design

sel |> -
in0

out

inl
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2-1 MUX
sel in0 inl1 out
0O 0 O 0

0 1 0
0 1 0 1
0 1 1 1
1 0 O 0
1 0 1 1
1 1 0 0
1 1 1 1

4-1 MUX (1/2)

The input of “sel” becomes 2-bit width
| denote each bit of them as “sel,” and “sel,”

The truth table becomes 6-value

X Yy z W X Yy z w
I | |
in0 in1in2in3 in0in1in2 in3
sel<£o L XX sel<il
out out
I !
X w
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4-1 MUX (2/2)

Assume that “sel” signal

controls open/close of

selo%c
AND gate | sel, e
“sel” = (0,0) opens “in0” gate ino

§

“sel” = (0,1) opens “inl” gate P 7
“sel” = (1,0) opens “in2" gate O
“sel” = (1,1) opens “in3" gate  IN1
g
. o
in2
in3—— :
g N
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Multiplexer with transmission gate (1/2)

Transmission gate
The circuit which can control conductivity

Operation
Input and output is conducted if “sel’=1
. : " sel \ out
Warning: There’s no current drive ability 0 7
High impedance status (noted as Z) 1 in

The node is not connected either Vdd or Gnd

sel sel Truth tabl
E.—DOL ‘1"% rlu.t table
sel In | out
No conduct Conduct Wiz
in out in out
] ] 0 1 Z
10 0
0 1 11 1
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Multiplexer with transmission gate (2/2)

Much simpler than MUX with logic el | out

0 in0
gates 1 | int
Warning: There’s no current drive
ability (= output drive ability) }

Current drive ability is depends on  in0 |
the logic gate before transmission

gate seL out
You have to increase drive ability of [ E
prior gate depending on outputs of 1
transmission gate N
I
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Three state buffer (tri-state buffer)

A buffer which can output disconnected status

Buffer: a circuit which amplifies signal strength
Assuming two not gates which drives output current
before transmission gate

Strictly speaking, the buffer and transmission gate is unified

Also called tri-state buffer Amplifies signal

(source of current)

Truth table
Circuit symbol selin | out —
sel 0 0| Z
01| 2 B
in%out 10 0
1 1)1 T
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Buffer

A circuit which amplifies signal strength

The current of amplified signal is comes from
internal of the buffer

Usually, we utilize larger (wide gate
width) FET to drive much current
Usage

Emphasize signal to drive much gates in
output side

Implement NOT gates separately
Utilize negated output

!ﬂt""ﬂ
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Larger
e Dc

Larger

4 I
Emphasize signal to drive long signal line L
Variations r
= I
— Vv

Current
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Bi-directional buffer

A buffer which can control signal flow

The signal flows port 2 to port 1 if sel=0
The signal flows port 1 to port 2 if sel=1

Note that the port 1 and port 2 is separated in

electrical viewpoint
Compare to transmission gate

port 1 port 2
sel port 1
Compare!
@ Compﬁt;gin/:zhgeﬁiﬁggg Hardware Design | (Chap. 4)
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Demultiplexer

The opposite operation to multiplexer

The output which has not elected becomes high

impedance status

Constructed with transmission gate 4
in
X
l sel
in sel \ outl out2 DOE

X Z

.4¥ Computing Architecture Lab.
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sel—0 0 in Z out2
outl out2 1 Z in
I i

Decoder

The circuit which output 1

signal to corresponding — ¢
output from input value ?ﬁ
Assume that a multiplexer with o
logic gate which has no input ®—0
The output is also called “1- o
hot code” ¢

JYOC

2 C ting Architecture Lab. .
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Encoder

A circuit which outputs the number with binary
notation which is corresponding to inputs
Opposite function to decoder
The output value under multiple input is undefined

in0 inl in2 in3 |out, out,
1 0 0 O 0 0
0O 1 0 O 0 1
0O 0 1 O 1 0
0O 0 0 1 1 1
g .
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Priority encoder
Priority encoder which
The encoder which gives has priority to smaller inputs
priority to specified order irllo ir(l)l ir(l)Z ir(l)3 ogtl ogto
It can tolerate multiple inputs 0 1.0 0|0 1
- . 1 1 0 0|0 O
e.g. The _pnonty encod_er which oo 1 0l1 o
has priority to smaller inputs 1 0 1 0[O0 O
0 1 1 0|0 1
1 1 1 0|0 O
0 0 0 1|1 1
1 0 0 1/ 0 O
0 1 0 1|0 1
11 0 1/ 0 o0
0 01 1|1 0O
1 0 1 1[0 O
0 1 1 1|0 1
@ Computing Architecture Lab. H . 1 1 1 1 0 O
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Reading table with decoder and
multiplexer (1/2)

We can read data in table organization by utilizing
decoder and multiplexer
As shown in Chap. 5, we can minimize storage by utilizing table
organization

Reading data in
6th (0110) entry
0110

I

|

3|12 |1]0
716 |54
—11/10| 9 | 8

—{ 15|14 |13 | 12
I T N
— ¢1NUX |

C ting Architect Lab. .
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Decoder

Reading table with decoder and
multiplexer (2/2)

Operation
Select row by inputting higher side bits into decoder
Select column by inputting lower side bits into 4-1 MUX

Widely used in RAM, flash memory, and so on

Reading data in

6th (0110) entry | |_|
o110 _ 3121110
T 5 17]6[5]4
g-ﬂ'll 10| 9 | 8
15|14 |13 | 12

I
4-1 MUX |

I
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Outline

Data path controlling circuits
Multiplexer/demultiplexer
Buffer/Three state buffer/Bi-directional buffer

Encoder/decoder

Arithmetic circuits
Adder
Comparator/Majority vote
Shifter
Multiplier
Divider
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How to design arithmetic circuits?

From 1-bit arithmetic to multi bit arithmetic
Design and optimize 1-bit module
Under considering expansion to multi bit
Create multi bit circuit by utilizing 1-bit module
Similar to create program with function call

)D_

82 ao/ 28 20

@

Special technique for optimizing arithmetic circuits
Utilize characteristic of binary integer
Optimize under usual algebra

C ting Architect Lab. .
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The notation of integer in binary

We can represent 0 to 2"-1 integer with n-bit

binary notation (if we consider positive value)
2n-12n-2 23 22 21 20 Add weight to each

14/0]o0]| .. ol1]1]1]0] digi

We use twos complement to represent signed
integer (detail: subtraction circuit)
We can represent it -2"1 to +2"1-1

e.g. 8-bit signed integer with twos complement can
represent from -128 to +127

!ﬂt""ﬂ
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Addition of binary integer

Addition of 1-bit

0+0=0,0+1=1,1+0=1,1+1 =10
v\Carry

By considering carry, an addition of one digit
becomes addition of three 1-bit
Addition of augend (a), addend (b), and carry (c)

Carry 11110 ] C_'”‘O—L Ct_'” .
[ C_out a+

1101 c_out a
+) 1011 Fsum b—1 ysum b—1
11000 0" 1st bit 0" oth bit
@ C"'“”;‘;gi i Hardware Design | (Chap. 4) 22
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Addition of binary integer

Generalized notation of n-bit binary integer
The result becomes (n+1)-bit binary integer
Co=0
C, = Sy

Cn Cn-l Cn-2 C1 CO

+) gn-l gn-z gl go
n-1 ¥n-2 -+ ¥1 ~0

Sn Sn-1 Sn—2 Sl SO

C ting Architect Lab. .
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1-bit full adder

Definition of the circuit a becin|c out sum
Inputs: two 1-bit binary and 1-bit 8 8 (1) 8 (1)
carry |n.pu'.[ from Iower_ digit 01 0 0 1
Operation: sum all of inputs 01 1 1 0
Outputs: sumand carryoutput 1 0 O 0 1

101 1 0

Half adder 11 0 1 o
An adder which has no carry 111 1 1
input | |

a b
<——c_outc_in—
sum
@ Compﬁt;gin/:zhgeﬁiﬁggz Hardware Design | (Chap. 4) i 24




Implementation of half adder

Usually implemented with XOR gate

Much smaller gate number than AND-
OR organization

QD
(e
(@]
(7))

PP OO
RORrO
R OOO
OrEFrOo

Jisgesces

CmptgAhtt e Lab.
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Implementation of full adder

We can create full adder with half adder

Usually, the path of carry generation becomes
critical path

Critical path: the path has longest route

half adder
a
—a c c out
\ =
b—b\sﬁ:half adde%
a~>—T]

Path of carry generation
c_in

b s sum

C ting Architect Lab. .
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n-bit ripple carry adder

An adder which layouts n of 1-bit full adder
Called ripple carry adder (RCA)

The calculation time is in proportion to n

b 0
an-l bn-l a b al bl 8.0 0
| [ S S A
a b a b a b a b
© c_out c_in— ...gc_out C_i c _outc_in c _outc_in o
"l sum sum |2 sum 1 sum 0
} } } }
Sh-1 S; S So
(8n102 - 30) + (bpaby - b)
: COmpﬁt;gin':zhgeﬁiﬁang Hardware Design | (Chap. 4) 27
The RCA is slow
Why RCA is slow? 11110
cs will be defined after c, has defined 1101
c, will be defined after c, has defined *) 1011

11000

->C; is defined under sequential definition
n-bit addition requires O(n) time
Definition of O(n):

*Assuming function f(n) and G(n)
«f(n) = O[g(n)] if constant ¢ and nO which satisfy f(n) =c-g(n), n=n0
*Note that f(n) > 0, g(n) >0
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Carry look-ahead adder

The critical point is carry

Are there any way to speeding up carry
generation?

Idea: separate carry to two category
Generation of carry: g; = a;*b,
The carry must occur in this digit
Propagation of carry: p, = a, + b,
The carry will occur if carry from (i-1) has arrived
Note that the generation of g; and p; are easy

Assuming (a,.;8,5 --- 8g) + (b0 - D)

C ting Architect Lab. .
ﬁ Ompﬁgjgim'; Shimada Hardware Design | (Chap. 4) 29
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Extracting carry with g,, p;, and ¢,

Cn becomes n+1 sum of term of n+1 literal

C1= 9oTPoCo

€= 01+P1C1  -> c,= g;+P;9y+P1PCo | Calculated without ¢,

C3= 02+P,Cy  -> C3= g,+P,0;+P2P190+P2P1PoCo
-> C4= 031tP30951P3P2911P3P2P1901P3P2P1PeCo

Ch= 0n-1tPn-1Cn1 =2 Cp= U1 tPn-19n-2TPn-1Pn-29n-3 7t
TPn-1 = PrQk1 T+ F Pp1+PoCo

Computing Architecture Lab.
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The condition which C_ becomes 1

Sum of later itemize

gn-l =1
0,., was propagated after n-1 digit (=p,,.;)
0,.3 was propagated after n-2 digit (=p,,.;* Pn.2)

C, was propagated through all digits

Cn= On-11Pn-19n-21Pn-1Pn-29n-3t - - TPn-g ++ PiOk-1 F-- -+ Pn-1++PoCo

C ting Architect Lab. .
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4-bit CLA

P3 O3 P, 0O, Pt 91 Po 9o

hd Py h 4 Py
N Co
) . e
Computing Architecture Lab. .
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The characteristic of CLA

It can calculate c; in parallel
Much complicated than RCA
Calculation time becomes O(log n)
c, becomes sum of n+1 term
Each term is consist of n+1 literals

-> If we implement it with balance tree, the height
becomes log n

C ting Architect Lab. .
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Quiz

How long does CLA requires to calculate 64-bit
value with NAND2 gate delay?

Around 8 NAND2 gate delay

Around 12 NAND2 gate delay

Around 16 NAND2 gate delay

Around 20 NAND2 gate delay

64-bit RCA requires around 129 NAND2 gate
delay

2 Co ting Architecture Lab. .
i.,'?. °m”,i§ﬁm’; 'Seﬁi:ﬁaga Hardware Design | (Chap. 4) 34

17



Answer

2. Around 12 NAND2 gate delay
1 NAND?2 delay for prepare pi and gi
About 8 NAND2 delay for prepare ci from pi and gi
3 NAND2 delay for calculate si
Result of practical implementation
Alpha 21264 processor utilizes 12 FO4 delay for each

pipeline stage ’ pipeline stage ->Chap. 11

It execute 64-bit arithmetic in 1 pipeline stage

C ting Architect Lab. .
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Explore of faster adder

Adder is one of the important circuit so that
there’s many implementations
Examples

Carry select adder

Conditional sum adder

Carry skip adder

Carry bypass adder

Carry complete adder

Domino logic adder for Pentium 4

2 Co ting Architecture Lab. .
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Outline of domino logic

Operate with precharge and evaluation
(=discharge)

If input satisfies condition, output is discharged
e.g. Domino logic XOR gate

(a,b) =(1,0) (a,b)=(0,1) | Otherwise,
the output is

Precharge not discharged
(ﬂ ﬁ
a % _4
1
b _ b4
e
ﬁ °°'“P:|‘gjgi n’:z“gﬁ‘ﬁ;g; - Hardware Design | (Chap. 4) - 37

Twos complement (1/2)

A method which gives negative weight for most
significant bit

-2n-19n-2 23 22 21 20
00| - o|1|1|1|0

e.g. Twos complement with 8-bit width
_27 26 25 24 23 22 21 20

1/0/0|{0(0|0O|O|0O| =-27=-128
1/0(0|0(0|0|0|1| =-27T+20=-127
0/0[{1/0|0(0|0|1]| =26+20=65
O(1(1|21|1(1|1|1| =26+25+..+20=127

2 Co ting Architecture Lab. .
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Twos complement (2/2)

We can represent -2"1 to +2n-1-1

T | t with 8-bit Example of 8-bit width
€.d. Iwos complement wi -0l 011]:1111 “+.127,,

width :
Why we do not use independent 00000001 *+1”
ian bit? 00000000 “O
Sign bit: 11111111 “1”
It creates “positive 0” and “negative : :
0" 10000000 “-128”
-> redundant!!! Independent sign bit
v
0 000000000000000 “positive 0"
1 000000000000000 “negative 0"
P
ﬁ COmpﬁt;gin':zhgeﬁiﬁang Hardware Design | (Chap. 4) 39

How to create twos complement?

You can gain inverse sign of twos complement
by negating all bits and add 1 to it

01111111 =127

Add1_-~ ~~egation
01111110 10000000
Negatic‘)N ~—Add 1

10000001 =-127

Why it becomes twos complement?
A negation of m becomes -2"! + (2"1-1) - m
By adding 1 to above one, we can gain -m
Note that -m = -2"1+(2"-1-m) = -2n-1+{(2"1-1)-m+1}

2 Co ting Architecture Lab. .
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Subtraction with twos complement

Create twos complement of subtrahend and add it with
adder
Organization of the circuit
Negate all bits before adder
“+1" is done by adding carry to c,

5 R O A i A
a b a b a b a b J
<—C outc in<—...<c—c outc i outc in outc in
S 3 TG T |G T T | G
sum sum sum sum
Sh1 S; S1 So
sm (3ng8ng . 80) - (Bygbys, .. by)
ﬁ COmpﬁt;gin':zhgeﬁiﬁang Hardware Design | (Chap. 4) 41

The sign bit after adding positive and
negative values

Assume signed 8-bit world
If carry in and carry out of the sign bit are same, you only
have to add them

Equal 0% 0
q 1)1111111 1 Eq”a|5>10111111 65
00000011 +3 00000011 +3
100000010 +2 Oowl\1000010 -62

Equal Equal 0
q 1111111 1 00111111 +63
10000011 -125 )Y 00000011 +3

0000010 -126 00\1000010 +66
0r

11

= Co ting Architect Lab. .
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The sign bit after adding positive and
negative values

Sign bit: equals to most left bit (MSB: most significant bit)
If carry in and carry out of the sign bit are different, you
have to treat it overflow
The result exceeds range which can be represented with
signed 8-bit

From -128 to +127

Different[ )L Wrong resuit Different] )* 0 Wrong result
@0‘111111 #1270 0lo11111 2, -65
+)’ 00000011 \+3 +)/ 10000011 \-125

0 10000010 -126 10\1000010 %66

x_J
. x_J .
0 True result is +130 1 True result is -190
C ting Architect Lab.
ﬁ pHajgime Shimada Hardware Design | (Chap. 4) 43

Short exercise

Show arithmetic result under signed 8-bit world
Show both binary and decimal notation
Notate “overflow” if it occurs

10111101 -67 00111111 +63
+) 00100011 +35 +)0[1111111 +127

2 Co ting Architecture Lab. .
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Answer

10111101 -67 00111111 +63
+) 00100011 +35 +) 01111111 +127

011100000-32 01/0111110 -66

*Overflow!
*True result is +190

C ting Architect Lab. .
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Unify adder and subtracter

We can unify adder and subtracter

Control signal provide carry for least bit which is
required to create twos complement

Notation method of a 4bi n CoerI_ Slgnal
“n-bit width signal” Negafion of eagh bit 0: adding .
T~ L =3 1: subtracting
MUX [~
¥n
Adder

Carry for least bit

¥n

2 Co ting Architecture Lab. .
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ALU (Arithmetic Logic Unit)

Usually, we implement multiple arithmetic function to one
circuit
We can share logic gates between arithmetics

e.g. AND/XOR operation of a and b are partial result of half
adder

We can save number of logic gates

b
s %
/ Control
ALU :  (add, sub, compare,
and, or, xor,...)
18

!ﬂt""ﬂ
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1-bit right shift

Movie 1 digit to right
Least significant bit (LSB) is banished
MSB differs between shift method
Logical shift: insert 0
Arithmetic shift: insert prior MSB
The result becomes divided by 2
e.g. 00000111(+7) -> 00000011(+3)
e.g. 11111010(-6) -> 11111101(-3)

0
Achieved with only wire connection mssrt\\ \ \ \ \ \ \\'

copy| 1411111

Logical shift\01010101
Arithmetic shift: 11010101

10101011

L O

2 Co ting Architecture Lab. .
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1-bit left shift

Movie 1 digit to right
MSB is banished

10101011

T Y

0 is inserted into LSB
The result becomes multiplied by 2

TN

e.g. 00000111(+7) -> 00001110(+14)
e.g. 11111010(-6) -> 11110100(-12)

Also achieved with only wire connection

PLTETT ] insen

10101010

You have to consider overflow if you execute arithmetic

shift

e.g. 10000000(-128) -> 00000000(0) Overflow!

ﬁ C°mp}:t;gin’:zhgeﬁiﬁggg Hardware Design | (Chap. 4) 49
1-bit rotate left (or right)
_ Rotate left
1-bit rotate left 10101011
Move 1 digit to left K11+
MSB is moved to LSB
1-bit rotate right TN
Move 1 digit to right 10101011
LSB is moved to MSB Rotate right
10101011
1 I N W I T
@ Computing Architecture Lab. Hardware Design | (Chap 4) 1 1 0 1 0 1 O 1 50
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Barrel shifter

A circuit which can achieve arbitrary shift
Usually, it permits several shift related operations

n-bit shift gives result of multiplied by 2" or
divided by 2"

i, g 05 iy g Ay 0y
Shift amount 17 16 F f f f f f
C
82 — Barrel shifter right/left

l l l l l l l l arithmetic/logical

ﬁ Compﬁggin/:zhgﬁiﬁ;g: Hardware Design | (Chap. 4) 51

One implementation of barrel shifter

Creating logical expression of each outputs and
construct two level logic

e.g. 03 =r_I"(ig*Cy"CyHiyC iyt Cy) + C,7Co"Cy
+1_l (i CotisCyHigCy " Cotiz*Cy)
Assuming r_| = 1 under right shift

i? i6 i5 i i3 i2 i1 '
Shift amount 11 l f l l l f
Co— Barrel shifter right/left
NUBEY i
_," Compﬁt;?nﬁzhgeﬁﬁﬁggg Hardware Design | (Chap. 4) 52
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The other implementation of barrel shifter

Cascaded MUX which selects 2" bits right shift, 2" bits
left shift, or no shift

The length of critical path becomes long 0

0 |f I |T I |E % |f Io
right/lce?ft: MUX
fight/left . MUX —
N
fightller— MUX

I
0, O3 O, 0; O

@ Computing Architecture La\b.o7 6 .
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Example of operation

3-bit right shift

rightlleft; L+ MUX

right/le%‘tf

c, O Lo MUXS

nght/leftT 1 l 1 1 1 1 1 1

0, 05 05 0, 05 0, 0; O

2 Co ting Architecture Lab. .
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Equivalent comparator

1-bit equivalent comparator becomes XNOR

n-bit equivalent comparator

AND of all digits
Equivalent if all digits are equivalent

Place AND gate with balanced tree

Ay I

C ting Architect Lab. .
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8}
(e

out

PP OO
R OPrFr O
= OO Rr|C

Comparator for grater than, less than,
grater equal, and less equal (1/2)

1-bit comparison
a>b (GT: grater than) -> f=alb’
a>=b (GE: grater equal) -> f=a+b’
Abbreviation of compare or
comparator: cmp
Similarly, less than and less equal
function will be implemented

Also, we can exchange inputs and
evaluate with GT and GE

Prepare MUX at input side of comparator

PRk oRr|®

grater
/less

2 C ting Architecture Lab. .
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Comparator for grater than, less than,
grater equal, and less equal (2/2)

In multi-bit implementation, the result of
higher digit is selected
Prepare a logic which conduct
Propagate lower result if a;=b;
Propagate O if inputs a;<b;
Propagate 1 if inputs a;>b;

a 0010101 a 0010101
b 0010001 b 0110001

le—1+«0 O«Q0«—1+0

W)
o
Py

o
c
=3

Y eRe)
R OROo
o= o

ana, Png a, b ao, bo

REl-bit cmpiy - Rﬁl—bit cmp- - R&l—bit cmp—~0
o

.4¥ Computing Architecture Lab.
Hajime Shimada
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Comparison with subtraction circuit

If the result of a-b is positive, a>b is approved
Check MSB under twos complement arithmetic

If the n-bit value is unsigned value, you have to check
with (n+1)bit value arithmetic

If the result of a-b is zero, a=b is approved
If you implement cmp into ALU, you can use this

method
Dedicated cmp is used in dedicate purpose
hardware

@ Compﬁtianjgin/:zhgeﬁiﬁggg Hardware Design | (Chap. 4) 58
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Multiply

1-bit multiply is the same to AND
0x0=0,0x1=0,1x0=0,1x1=1
n-bit multiply becomes n of n-bit addition
Iteration of 1-bit shift and addition
The output becomes (2xn)-bit binary

1011 A=a_.a._..a a
X n-1 “n-2 1 0
) o101 X) B=b ,b,..b b
0000 A X by
1011 AXxb;x2
+) 0000 Axbyx 4\ 1-bit left shift
o 0110111 : 2-bit left shift
ﬁ Compﬁt;gin/:zhgeﬁiﬁ;g: Hardware Design | (Chap. 4) 59

Example of 4-bit multiply

(az a; a; ag) X (b3 b, by by)

X) b; b, b, by
azb, ab, a;b, ayb,

The result of 1-bit
multiply (AND) azb, ab;, ab, ayb;

azb, ab, ab, ayb,

+) azh; ab; a;b; aghbs

z, Z4 2 z, I3 Z, I Z

2 Co ting Architecture Lab. .
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Array multiplier

Align adder to array

The operation time becomes O(n)
a3 & a

X) b; by b, by
Note that| | a?lb0 azlbO aib0 aghy
represents adder ash, [a,by|[a;by] [aghy]
-input 2-
(3-input 2-output) ash, [a,0,] [a,0,][ag 2\\
af,b3 a,b;| [a;b3]| [aghs Carry
I B S
d 7 7 {
P - Zs z z z; z, z Z,
ﬁ Compﬁggin/:zhgﬁiﬁ;éz Hardv?/are Desi‘én | (Chap. 4) ! 61

Outline of Wallace tree multiplier

One digit of n-bit multiply becomes summation
of n binaries

If we utilize carry save adder, we can construct
3-2 arithmetic tree

Group 3 binaries from summation of n and apply
carry save addition

The result becomes summation of (2/3 x n)

Back to 1. until the summation becomes summation
of 2 (usual addition)

It can operate multiply with O(log n)

2 Co ting Architecture Lab. .
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Carry save adder (CSA)

An array of n full adders

Output sum of 3 binary inputs (2 binary outputs)
There’s no carry propagation
Operation time is constant (independent to number of inputs)

It can quickly translate sum of 3 binaries to sum of 2

binaries
No relationships
A AROROA a,q bpg Cna a, b, ¢, a, by, ¢

an_l an_2 e al aO l l

v v
bn—l bn—2 bl bO t e e czjout ct_)in

c_out c_inAJ *** ,—c_outc_in
+) Cp-1 Chp . Cq1 Cp suT suT suT
dn dn_l dn_z dl do dn-l d]_ dO
e, e,

€, €11€h0 .- €85 ©En X e’

C ting Architect Lab. .
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3-2 Wallace tree multiplier

_’CSAl_’CSAz_, CLA a, a a &
%) b; b, by b
agby |a,bel[ @byl aghg
CSA1l aghy |aby| [a.b,||agh,
asb, |a,b,| la;b,| [a b,
CSA2 { agh; a;bs alJ'b; aot)s ‘
|/ T/ T/ 1.
+) [ [ |(:LA [ [
v v v v v
o R S
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Example of 8-bit multiply

Number of summation becomes 2/3 under one CSA
After O(log n) of CSAs, it becomes sum of 2 binaries
A=a;aq...; 9

X) B=h,bg..b,b, Apply CLA at final
AXbo — L
AXb; Xx2— CSA "
- CSA —
AXb,x4— T1CSA L | csa

AXby X8 / ]
Axb,x16— | CSA | //
AXDbgx32—
A X bg x 64 CSA

Axb;x128——— |

C ting Architect Lab. .
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Division

Implement computation on paper frankly

e.g. 107 divided by 3

Cannot subtract 110000000
Cannot subtract 0071 serrennnen

0000001 101011

0000001
) 000000140000000 ) 0000084.10900000
101011
01101011 ——-)00000011000000
6-bit left shift 1011
,
00000011 x 2 ———)— 0000001100000

(7-bit left shift) 5-bit left shift 0000000001011

Can subtract 1100000
@ Compﬁt;?nﬁzhgeﬁﬁﬁggz Hardware Design | (Chap. 4) : 66
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How to represent it to circuit?

Implement “computation on paper” frankly
Usually, it becomes sequential circuit (Chap. 6)

If we achieve it with combinational logic, it requires
much adders

How to implement subtractable or not

Firstly subtract and evaluate whether the result is

negative value or not
Constructed with subtracter and checking MSB

If the value underruns 0, how do we treat it?
Restoring method: add divisor to dividend
Non-restoring method: detail is shown in later slide

!ﬂt""ﬂ
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Restoring method

If MSB of dividend after (0]0 ) Rrrrrrreres
subtraction is 1, it adds 00000011 ) 01101011
divisor to restore +) 1111111010000000

In worst case, it requires 4, .1111111011101011
twice adder per each digit resiora"0000000110000000

Operation time becomes 0000000001101011
0(2n) +)1111111101000000
o 1111111110101011
e'g:'; .10d7 d';"ged ;’yoill  Add 19 +).0000000011000000
is denoted as O... an
X 0000000001101011
-3 is denoted as 1...1101 +)1111111110100000
0000000000001011
@ COmpﬁt;gin':zhgeﬁiﬁang Hardware Design | (Chap. 4) 68
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Non-restoring method

adds following shifted dividend
If temporal dividend is positive

Subtract shifted dividend
If temporal dividend is negative

Add shifted dividend

Operation time becomes O(n)

ﬁ Computing Architecture Lab.
= Hajime Shimada

Hardware Design | (Chap. 4)

If temporal dividend becomes negative, this method

Quotient becomes 1 if result is positive, otherwise 0

Quotient becomes 1 if result is positive, otherwise 0
In some case, we have to compensate reminder

69

Let's assume 37 divided by 6

Hajime Shimada

00100101 37
Quotients 6x2° 111010000 -48
( 0 @1110101 -11
+6x22 00011000 +24
1k47¥g§000110113
wﬁnﬁ 6x21 11110100 -12
.. 100000001 1
-6x2° 11111010
ﬁ@cv“qki)ﬁggllllolf

Hardware Design | (Chap. 4)

Example of non-restoring method

6 is denoted as 0110 and -6 is denoted as 1010

If reminder becomes
negative, correct
remainder by adding +6

11111011
00000110

100000001
H_J

Remainder (=1)
70
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Utilizing higher radix under division

We can speedup division by utilizing higher radix
Prior division is radix-2 division
Only prepare n left shifted divisor
e.g. radix-4 division
Prepare following divisor
n left shifted
n+1 left shifted
(n left shifted) + (n+1 left shifted)
Subtract above three from dividend
Get 2-digit of quotient simultaneously
Quotient becomes 00 if all of them are not subtractable
Quotient becomes 01 if only 1. is subtractable
Quotient becomes 10 if 1. and 2. are subtractable
Quotient becomes 11 if all of them are subtractable

C ting Architect Lab.
ﬁ O o Hardware Design | (Chap. 4)

Hajime Shimada

Hajime Shimada 71
%% Computing Architecture Lab. .
@ Hardware Design | (Chap. 4) 72

36



Quiz

What is the correct organization of 8-1 MUX?

!ﬂt""ﬂ
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Answer

Both 1 and 4 are correct answer
1 is based on AND-OR logic gate based organization
4 is based on transmission gate based organization
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