Hardware Design I Chap. 4 Representative combinational logic

Computing Architecture Lab.
Hajime Shimada
E-mail: shimada@is.naist.jp

Already optimized circuits

There are many optimized circuits which are well used

You can reduce your design workload
You can use faster one than your design :-P

- Some of them has different optimization level

Optimized for logic gates reduction
Optimized for operating speed

Outline

Data path controlling circuits
Multiplexer/demultiplexer
Buffer/Three state buffer/Bi-directional buffer
Encoder/decoder

- Arithmetic circuits

OAdder

- Comparator/Majority vote
- Shifter
- Multiplier

Divider

Multiplexer (1/2)

A circuit which outputs one of the inputs
Also called "Selector"
e.g. 2-1 MUX (2-input 1-output multiplexer)

Output the value of "in0" if the input of "sel" $=0$
Output the value of "in1" if the input of "sel"=1

Computing Architecture Lab.
Hajime Shimada

Multiplexer (2/2)

Logical expression of 2-1 MUX:
out $=($ sel $)$ '(in0) $+($ sel $)($ in1 $)$
Assume that "sel" signal controls open/close of AND gate

Truth table of

You can easily to extend logical expression sel in0 in1 out to much more inputs with above design

0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Computing Architecture Lab.
Hajime Shimada

4-1 MUX (1/2)

- The input of "sel" becomes 2-bit width

I denote each bit of them as "sel ${ }_{1}$ " and "sel ${ }_{0}$ "
The truth table becomes 6-value

4-1 MUX (2/2)

Assume that "sel" signal

 controls open/close of AND gate"sel" = $(0,0)$ opens "in0" gate
"sel" = $(0,1)$ opens "in1" gate
"sel" = $(1,0)$ opens "in2" gate
"sel" = $(1,1)$ opens "in3" gate

Multiplexer with transmission gate (1/2)

- Transmission gate

The circuit which can control conductivity
Input and output is conducted if "sel"=1
Warning: There's no current drive ability

- High impedance status (noted as Z)

The node is not connected either Vdd or Gnd

Hardware Design I (Chap. 4)

Multiplexer with transmission gate (2/2)

Much simpler than MUX with logic gates
Warning: There's no current drive ability (= output drive ability)
Current drive ability is depends on the logic gate before transmission gate
You have to increase drive ability of You have to increase drive ability of
prior gate depending on outputs of transmission gate

Computing Architecture Lab.

Three state buffer (tri-state buffer)

- A buffer which can output disconnected status

Buffer: a circuit which amplifies signal strength

- Assuming two not gates which drives output current before transmission gate
Strictly speaking, the buffer and transmission gate is unified

Computing Architecture Lab. Hajime Shimada

state buffer		
Truth table		
sel in		
0		

0 \& 1

1 \& Z

1 \& 0

1 \& 1\end{array}\right)\)

Hardware Design I (Chap. 4)

Buffer

A circuit which amplifies signal strength
The current of amplified signal is comes from internal of the buffer
Usually, we utilize larger (wide gate
 width) FET to drive much current

- Usage

Emphasize signal to drive much gates in output side
Emphasize signal to drive long signal line
Variations
Implement NOT gates separately
Utilize negated output

Bi-directional buffer

- A buffer which can control signal flow

The signal flows port 2 to port 1 if sel=0
The signal flows port 1 to port 2 if sel=1
Note that the port 1 and port 2 is separated in electrical viewpoint
Compare to transmission gate

Computing Architecture Lab.

Demultiplexer

The opposite operation to multiplexer

- The output which has not elected becomes high impedance status
- Constructed with transmission gate

Computing Architecture Lab. Hajime Shimada

Decoder

- The circuit which output 1 signal to corresponding output from input value

Assume that a multiplexer with logic gate which has no input
The output is also called "1hot code"

Encoder

A circuit which outputs the number with binary notation which is corresponding to inputs
Opposite function to decoder
The output value under multiple input is undefined

in0					
in1	in2	in3	out $_{1}$	out $_{0}$	
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Priority encoder

Priority encoder which

- The encoder which gives has priority to smaller inputs priority to specified order
It can tolerate multiple inputs
e.g. The priority encoder which has priority to smaller inputs

in0	in1	in2	in3	out $_{1}$ out $_{0}$	
1	0	0	0	0	0
0	1	0	0	0	1
1	1	0	0	0	0
0	0	1	0	1	0
1	0	1	0	0	0
0	1	1	0	0	1
1	1	1	0	0	0
0	0	0	1	1	1
1	0	0	1	0	0
0	1	0	1	0	1
1	1	0	1	0	0
0	0	1	1	1	0
1	0	1	1	0	0
0	1	1	1	0	1
1	1	1	1	0	0
				16	

Reading table with decoder and multiplexer (1/2)

We can read data in table organization by utilizing decoder and multiplexer
As shown in Chap. 5, we can minimize storage by utilizing table organization

Reading data in fth (0110) entry

Reading table with decoder and multiplexer (2/2)

- Operation

Select row by inputting higher side bits into decoder
Select column by inputting lower side bits into 4-1 MUX

- Widely used in RAM, flash memory, and so on

Reading data in 6th (0110) entry $\stackrel{0110}{\square}$

Outline

Data path controlling circuits

OMultiplexer/demultiplexer
Buffer/Three state buffer/Bi-directional buffer
O Encoder/decoder
Arithmetic circuits
Adder
Comparator/Majority vote
Shifter
Multiplier
Divider

How to design arithmetic circuits?

- From 1-bit arithmetic to multi bit arithmetic

Design and optimize 1-bit module

- Under considering expansion to multi bit

Create multi bit circuit by utilizing 1-bit module

- Similar to create program with function call

Special technique for optimizing arithmetic circuits
Utilize characteristic of binary integer
Optimize under usual algebra

The notation of integer in binary

- We can represent 0 to $2^{n}-1$ integer with n-bit binary notation (if we consider positive value) $\begin{array}{lllllllllll}2^{n-1} 2^{n-2} & 2^{3} & 2^{2} & 2^{1} & 2^{0} & \text { Add weight to each }\end{array}$

| 0 | 0 | \cdots | | 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

We use twos complement to represent signed integer (detail: subtraction circuit)

We can represent it -2^{n-1} to $+2^{n-1}-1$
e.g. 8-bit signed integer with twos complement can represent from -128 to +127

Addition of binary integer

Addition of 1-bit

$$
0+0=0,0+1=1,1+0=1,1+1=10
$$

By considering carry, an addition of one digit becomes addition of three 1-bit

Addition of augend (a), addend (b), and carry (c)
Carry 11110
1101
+) 1011
11000

Addition of binary integer

Generalized notation of n-bit binary integer
The result becomes ($n+1$)-bit binary integer
$c_{0}=0$
$\mathrm{c}_{\mathrm{n}}=\mathrm{s}_{\mathrm{n}}$

$$
\begin{array}{r}
\\
c_{n} c_{n-1} c_{n-2} \ldots c_{1} c_{0} \\
a_{n-1} a_{n-2} \ldots a_{1} a_{0} \\
+\quad b_{n-1} b_{n-2} \ldots b_{1} b_{0} \\
\hline
\end{array}
$$

1-bit full adder

- Definition of the circuit

Inputs: two 1-bit binary and 1-bit carry input from lower digit
Operation: sum all of inputs
Outputs: sum and carry output

- Half adder

An adder which has no carry input

Computing Architecture Lab.

a bc_in	c_out	
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1
	b	
$\begin{gathered} \text { c_out c_in } \\ \text { sum } \end{gathered}$		
		24

Implementation of half adder

- Usually implemented with XOR gate Much smaller gate number than ANDOR organization

a	b	c	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Computing Architecture Lab. Hajime Shimada

Implementation of full adder

We can create full adder with half adder
Usually, the path of carry generation becomes critical path

Critical path: the path has longest route

n-bit ripple carry adder

- An adder which layouts n of 1-bit full adder

Called ripple carry adder (RCA)

- The calculation time is in proportion to n

Computing Architecture Lab.

The RCA is slow

```
Why RCA is slow?
```

Why RCA is slow?
c_{5} will be defined after c_{4} has defined
c_{5} will be defined after c_{4} has defined
c_{4} will be defined after C_{3} has defined
c_{4} will be defined after C_{3} has defined
c_{5} will be defined after c_{4} has defined
11110
c_{4} will be defined after C_{3} has defined

..

```
        ..
```

 ..
    ```
\(\begin{array}{r}+\quad 1011 \\ \hline 11000\end{array}\)
```

$->\mathrm{C}_{5}$ is defined under sequential definition
n-bit addition requires $O(n)$ time Definition of $O(n)$:

```

-Assuming function \(f(n)\) and \(G(n)\)
\(\cdot f(n)=O[g(n)]\) if constant \(c\) and \(n 0\) which satisfy \(f(n) \leqq c \cdot g(n), n \geqq n 0\) - Note that \(f(n)>0, g(n)>0\)

\section*{Carry look-ahead adder}

The critical point is carry
- Are there any way to speeding up carry generation?
Idea: separate carry to two category
Generation of carry: \(g_{i}=a_{i} \cdot b_{i}\)
- The carry must occur in this digit

Propagation of carry: \(p_{i}=a_{i}+b_{i}\)
- The carry will occur if carry from (i-1) has arrived

Note that the generation of \(g_{i}\) and \(p_{i}\) are easy
\[
\text { Assuming }\left(a_{n-1} a_{n-2} \ldots a_{0}\right)+\left(b_{n-1} b_{n-2} \ldots b_{0}\right)
\]

\section*{Extracting carry with \(\mathrm{g}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}\), and \(\mathrm{c}_{0}\)}
- Cn becomes \(n+1\) sum of term of \(n+1\) literal


\section*{The condition which \(\mathrm{C}_{\mathrm{n}}\) becomes 1}

Sum of later itemize
\(g_{n-1}=1\)
\(g_{n-2}\) was propagated after \(n-1\) digit \(\left(=p_{n-1}\right)\)
\(g_{n-3}\) was propagated after \(n-2\) digit \(\left(=p_{n-1} \cdot p_{n-2}\right)\)
\(g_{k-1}\) was propagated after \(k\) digit
\(\mathrm{c}_{0}\) was propagated through all digits
\(c_{n}=g_{n-1}+p_{n-1} g_{n-2}+p_{n-1} p_{n-2} g_{n-3}+\ldots+p_{n-1} \ldots p_{k} g_{k-1}+\ldots+p_{n-1} \ldots p_{0} c_{0}\)


\section*{The characteristic of CLA}
- It can calculate \(\mathrm{c}_{\mathrm{i}}\) in parallel

Much complicated than RCA
- Calculation time becomes \(O(\log n)\)
\(\mathrm{c}_{\mathrm{n}}\) becomes sum of \(\mathrm{n}+1\) term
Each term is consist of \(n+1\) literals
-> If we implement it with balance tree, the height becomes \(\log n\)

\section*{Quiz}
- How long does CLA requires to calculate 64-bit value with NAND2 gate delay?
1. Around 8 NAND2 gate delay
2. Around 12 NAND2 gate delay
3. Around 16 NAND2 gate delay
4. Around 20 NAND2 gate delay
- 64-bit RCA requires around 129 NAND2 gate delay

\section*{Answer}
2. Around 12 NAND2 gate delay 1 NAND2 delay for prepare pi and gi
About 8 NAND2 delay for prepare ci from pi and gi 3 NAND2 delay for calculate si
- Result of practical implementation

Alpha 21264 processor utilizes 12 FO4 delay for each pipeline stage
pipeline stage ->Chap. 11
It execute 64-bit arithmetic in 1 pipeline stage

\section*{Explore of faster adder}

Adder is one of the important circuit so that there's many implementations
- Examples

Carry select adder
Conditional sum adder
Carry skip adder
Carry bypass adder
Carry complete adder
Domino logic adder for Pentium 4

\section*{Outline of domino logic}
- Operate with precharge and evaluation (=discharge)

If input satisfies condition, output is discharged
- e.g. Domino logic XOR gate


\section*{Twos complement (1/2)}
- A method which gives negative weight for most significant bit
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline\(-2^{n-1} 2^{n-2}\) \\
\hline 0 & 0 & \(\cdots\) & & 0 & 1 & 1 & 1 & 0 \\
\hline
\end{tabular}
e.g. Twos complement with 8-bit width
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{1} & & & & & & & & \multirow[b]{2}{*}{\(=-2^{7}=-128\)} \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \(=-2^{7}+2^{0}=-127\) \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & \(=2^{6}+2^{0}=65\) \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \(=2^{6}+2^{5}+\ldots+2^{0}=127\) \\
\hline
\end{tabular}

\section*{Twos complement (2/2)}
- We can represent \(-2^{n-1}\) to \(+2^{n-1}-1\)
e.g. Twos complement with 8-bit width
Why we do not use independent sign bit?

It creates "positive 0 " and "negative
0 "

Example of 8-bit width

-> redundant!!! Independent sign bit
ó 000000000000000 "positive 0"
1000000000000000 "negative 0"

\section*{How to create twos complement?}
- You can gain inverse sign of twos complement by negating all bits and add 1 to it

- Why it becomes twos complement?

A negation of \(m\) becomes \(-2^{n-1}+\left(2^{n-1}-1\right)-m\)
By adding 1 to above one, we can gain \(-m\)
Note that \(-m=-2^{n-1}+\left(2^{n-1}-m\right)=-2^{n-1}+\left\{\left(2^{n-1}-1\right)-m+1\right\}\)

\section*{Subtraction with twos complement}
- Create twos complement of subtrahend and add it with adder
- Organization of the circuit

Negate all bits before adder
" +1 " is done by adding carry to \(\mathrm{c}_{0}\)


\section*{The sign bit after adding positive and negative values}

Assume signed 8-bit world
- If carry in and carry out of the sign bit are same, you only have to add them


\section*{The sign bit after adding positive and negative values}
- Sign bit: equals to most left bit (MSB: most significant bit)
- If carry in and carry out of the sign bit are different, you have to treat it overflow
- The result exceeds range which can be represented with signed 8-bit

From -128 to +127
Different \(\curvearrowleft 0\) Wrong result
[10111111-65
+) \(10000011-125\)
1 True result is -190

\section*{Short exercise}
- Show arithmetic result under signed 8-bit world Show both binary and decimal notation
Notate "overflow" if it occurs

10111101 -67 \(00111111+63\)
+) \(00100011+35+\) +) \(01111111+127\)

\section*{Unify adder and subtracter}
- We can unify adder and subtracter

Control signal provide carry for least bit which is required to create twos complement


\section*{ALU (Arithmetic Logic Unit)}

Usually, we implement multiple arithmetic function to one circuit
- We can share logic gates between arithmetics
e.g. AND/XOR operation of \(a\) and \(b\) are partial result of half adder
We can save number of logic gates


\section*{1-bit right shift}


\section*{Movie 1 digit to right}

Least significant bit (LSB) is banished
MSB differs between shift method
- Logical shift: insert 0
- Arithmetic shift: insert prior MSB
- The result becomes divided by 2
e.g. 00000111(+7) -> 00000011(+3)
e.g. 11111010(-6) -> 11111101(-3)
- Achieved with only wire connection


Logical shift. 01010101 Arithmetic shift: 11010101

\section*{1-bit left shift}

Movie 1 digit to right
10101011
MSB is banished
0 is inserted into LSBThe result becomes multiplied by 2
\[
\begin{aligned}
& \text { e.g. } 00000111(+7) \text {-> } 00001110(+14) \\
& \text { e.g. } 11111010(-6) \text {-> } 11110100(-12)
\end{aligned}
\]

- Also achieved with only wire connection
- You have to consider overflow if you execute arithmetic shift
e.g. 10000000(-128) -> 00000000(0) Overflow!

\section*{1-bit rotate left (or right)}

Rotate left
10101011


10101011
Rotate right 10101011


11010101

\section*{Barrel shifter}
- A circuit which can achieve arbitrary shift Usually, it permits several shift related operations
- n-bit shift gives result of multiplied by \(2^{n}\) or divided by \(2^{n}\)




Computing Architecture Lab Hajime Shimada

\section*{One implementation of barrel shifter}
- Creating logical expression of each outputs and construct two level logic
- e.g. \(o_{3}=r_{-} l^{\prime}\left(i_{0} \cdot C_{1} \cdot c_{0}+i_{1} \cdot C_{1}+i_{2} \cdot c_{0}\right)+c_{2} \cdot C_{1} \cdot c_{0}\)
\[
+r_{-} I\left(i_{4} \cdot c_{0}+i_{5} \cdot C_{1}+i_{6} \cdot \mathrm{c}_{1} \cdot \mathrm{c}_{0}+\mathrm{i}_{7} \cdot \mathrm{c}_{2}\right)
\]

Assuming \(r_{-} \mathrm{I}=1\) under right shift

Shift amount

ompuing Architecture Lab. Hajime Shimada


\section*{Example of operation}
- 3-bit right shift


\section*{Equivalent comparator}
- 1-bit equivalent comparator becomes XNOR
- n-bit equivalent comparator

AND of all digits
Equivalent if all digits are equivalent
Place AND gate with balanced tree
\begin{tabular}{cc|c}
\(a\) & \(b\) & out \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{tabular}


Hajime Shimada
Hardware Design I (Chap. 4)

\section*{Comparator for grater than, less than, grater equal, and less equal (1/2)}
- 1-bit comparison

- Similarly, less than and less equal function will be implemented

Also, we can exchange inputs and evaluate with GT and GE

Prepare MUX at input side of comparator


\section*{Comparator for grater than, less than, grater equal, and less equal (2/2)}
- In multi-bit implementation, the result of higher digit is selected
- Prepare a logic which conduct

Propagate lower result if \(a_{i}=b_{i}\)
Propagate 0 if inputs \(a_{i}<b_{i}\)
Propagate 1 if inputs \(a_{i}>b_{i}\)
\(11 R_{\text {in }}\)
a 0010101
a 0010101
b 0010001
\(1 \longleftarrow 1 \longleftarrow 0\)
\(\frac{\mathrm{b} 0110001}{0 \leftarrow 0 \longleftarrow 1 \leftarrow 0}\)


\section*{Comparison with subtraction circuit}
- If the result of \(a-b\) is positive, \(a>b\) is approved

Check MSB under twos complement arithmetic
If the \(n\)-bit value is unsigned value, you have to check with \((n+1)\) bit value arithmetic
- If the result of a-b is zero, a=b is approved
- If you implement cmp into ALU, you can use this method
- Dedicated cmp is used in dedicate purpose hardware

\section*{Multiply}

1-bit multiply is the same to AND
\(0 \times 0=0,0 \times 1=0,1 \times 0=0,1 \times 1=1\)
\(n\)-bit multiply becomes \(n\) of \(n\)-bit addition
Iteration of 1-bit shift and addition
The output becomes (2xn)-bit binary
×) 0101
1011
0000
1011
+) 0000
\(\times\) )
\(A=a_{n-1} a_{n-2} \ldots a_{1} a_{0}\)
×) \(B=b_{n-1} b_{n-2} \ldots b_{1} b_{0}\) \(A \times b_{0}\)
\(A \times b_{1} \times 2\) \(A \times b_{2} \times 4 \quad\) 1-bit left shift ! 2-bit left shift

\section*{Example of 4-bit multiply}
\(\left(a_{3} a_{2} a_{1} a_{0}\right) \times\left(b_{3} b_{2} b_{1} b_{0}\right)\)


\section*{Array multiplier}

Align adder to array
- The operation time becomes \(O(n)\)
\begin{tabular}{llll}
\(a_{3}\) & \(a_{2}\) & \(a_{1}\) & \(a_{0}\)
\end{tabular}


\section*{Outline of Wallace tree multiplier}
- One digit of \(n\)-bit multiply becomes summation of \(n\) binaries
- If we utilize carry save adder, we can construct 3-2 arithmetic tree
1. Group 3 binaries from summation of \(n\) and apply carry save addition
2. The result becomes summation of \((2 / 3 \times n)\)
3. Back to 1. until the summation becomes summation of 2 (usual addition)
It can operate multiply with \(O(\log n)\)

\section*{Carry save adder (CSA)}
- An array of \(n\) full adders
- Output sum of 3 binary inputs (2 binary outputs)

There's no carry propagation
Operation time is constant (independent to number of inputs)
- It can quickly translate sum of 3 binaries to sum of 2 binaries


Computing Architecture Lab.

\section*{3-2 Wallace tree multiplier}


\section*{Example of 8-bit multiply}
- Number of summation becomes \(2 / 3\) under one CSA
- After \(O(\log n)\) of CSAs, it becomes sum of 2 binaries
x) \(A=a_{7} a_{6} \ldots a_{1} a_{0}\)
\(B=b_{7} b_{6} \ldots b_{1} b_{0} \quad\) Apply CLA at final



\section*{How to represent it to circuit?}

Implement "computation on paper" frankly Usually, it becomes sequential circuit (Chap. 6) If we achieve it with combinational logic, it requires much adders
How to implement subtractable or not
Firstly subtract and evaluate whether the result is negative value or not

Constructed with subtracter and checking MSB
If the value underruns 0 , how do we treat it?
- Restoring method: add divisor to dividend
- Non-restoring method: detail is shown in later slide

\section*{Restoring method}


\section*{Non-restoring method}
- If temporal dividend becomes negative, this method adds following shifted dividend
- If temporal dividend is positive

Subtract shifted dividend
Quotient becomes 1 if result is positive, otherwise 0
- If temporal dividend is negative

Add shifted dividend
Quotient becomes 1 if result is positive, otherwise 0
- In some case, we have to compensate reminder
- Operation time becomes \(O(n)\)

\section*{Example of non-restoring method}

Let's assume 37 divided by 6
6 is denoted as 0110 and -6 is denoted as 1010


\section*{Utilizing higher radix under division}

We can speedup division by utilizing higher radix
- Prior division is radix-2 division

Only prepare \(n\) left shifted divisor
e.g. radix-4 division

Prepare following divisor
\(n\) left shifted
\(n+1\) left shifted
( \(n\) left shifted) \(+(n+1\) left shifted)
- Subtract above three from dividend
- Get 2-digit of quotient simultaneously
- Quotient becomes 00 if all of them are not subtractable
- Quotient becomes 01 if only 1. is subtractable
- Quotient becomes 10 if 1. and 2. are subtractable
- Quotient becomes 11 if all of them are subtractable


\section*{Quiz}
- What is the correct organization of 8-1 MUX?

\section*{Answer}

\section*{Both 1 and 4 are correct answer}

1 is based on AND-OR logic gate based organization
4 is based on transmission gate based organization

```

