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Already optimized circuits

There are many optimized circuits which are well 
used

You can reduce your design workload
You can use faster one than your design :-P

Some of them has different optimization level
Optimized for logic gates reduction
Optimized for operating speed



2

Hardware Design I (Chap. 4) 3
Computing Architecture Lab.

Hajime Shimada

Outline

Data path controlling circuits
Multiplexer/demultiplexer
Buffer/Three state buffer/Bi-directional buffer
Encoder/decoder

Arithmetic circuits
Adder 
Comparator/Majority vote
Shifter
Multiplier
Divider
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Multiplexer (1/2)

A circuit which outputs one of the inputs
Also called “Selector”

e.g. 2-1 MUX (2-input 1-output multiplexer)
Output the value of “in0” if the input of “sel”=0
Output the value of “in1” if the input of “sel”=1

in0 in1 
sel

out

x y

x

0
in0 in1

sel
out

x y

y

1 sel      out
0        in0
1        in1

Relationship between
inputs and output



3

Hardware Design I (Chap. 4) 5
Computing Architecture Lab.

Hajime Shimada

Multiplexer (2/2)

Logical expression of 2-1 MUX:
out = (sel)'(in0) + (sel)(in1)
Assume that “sel” signal controls 
open/close of AND gate
You can easily to extend logical expression 
to much more inputs with above design

sel  in0  in1   out
0    0    0       0
0    0    1       0
0    1    0       1
0    1    1       1
1    0    0       0
1    0    1       1
1    1    0       0
1    1    1       1

Truth table of 
2-1 MUX

sel 

in0

in1

out
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4-1 MUX (1/2)

The input of “sel” becomes 2-bit width
I denote each bit of them as “sel1” and “sel0”

The truth table becomes 6-value 

sel1 sel0 out
0     0       i0
0     1       i1
1     0       i2
1     1       i3

in0 in1 in2 in3 
sel

out

x y

x

00

z w

in0 in1 in2 in3
sel

out

x y

w

11

z w
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4-1 MUX (2/2)

Assume that “sel” signal 
controls open/close of 
AND gate

“sel” = (0,0) opens “in0” gate
“sel” = (0,1) opens “in1” gate
“sel” = (1,0) opens “in2” gate
“sel” = (1,1) opens “in3” gate

sel0
sel1

in0

in1

in2

in3
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Multiplexer with transmission gate (1/2)

Transmission gate
The circuit which can control conductivity
Input and output is conducted if “sel”=1
Warning: There’s no current drive ability

High impedance status (noted as Z)
The node is not connected either Vdd or Gnd

in out

sel

sel     out
0        Z
1        in

in out

sel
0 11

10

0
No conduct Conduct

sel in    out
0   0      Z
0   1      Z
1   0      0
1   1      1

Operation

Truth table
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Multiplexer with transmission gate (2/2)

Much simpler than MUX with logic 
gates
Warning: There’s no current drive 
ability (= output drive ability)

Current drive ability is depends on 
the logic gate before transmission 
gate
You have to increase drive ability of 
prior gate depending on outputs of 
transmission gate

sel

in0

in1

sel      out
0        in0
1        in1

out
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Three state buffer (tri-state buffer)

A buffer which can output disconnected status
Buffer: a circuit which amplifies signal strength

Assuming two not gates which drives output current 
before transmission gate

Strictly speaking, the buffer and transmission gate is unified

Also called tri-state buffer

sel in    out
0   0      Z
0   1      Z
1   0      0
1   1      1

in out

sel
Circuit symbol

Truth table

Amplifies signal
(source of current)
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Buffer

A circuit which amplifies signal strength
The current of amplified signal is comes from 
internal of the buffer

Usually, we utilize larger (wide gate 
width) FET to drive much current
Usage

Emphasize signal to drive much gates in 
output side
Emphasize signal to drive long signal line

Variations
Implement NOT gates separately
Utilize negated output

Larger

Larger

C
ur

re
nt
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Bi-directional buffer

A buffer which can control signal flow
The signal flows port 2 to port 1 if sel=0
The signal flows port 1 to port 2 if sel=1

Note that the port 1 and port 2 is separated in 
electrical viewpoint

Compare to transmission gate

port 2port 1

sel

Compare!

port 2port 1

sel

sel
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Demultiplexer

The opposite operation to multiplexer
The output which has not elected becomes high 
impedance status
Constructed with transmission gate

in
sel

out1  out2

x Z

x

0

sel

in

sel    out1 out2
0       in      Z
1       Z       in

out1

out2
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Decoder

The circuit which output 1 
signal to corresponding 
output from input value

Assume that a multiplexer with 
logic gate which has no input 

The output is also called “1-
hot code”

in0

in1

out0

out1

out2

out3
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Encoder

A circuit which outputs the number with binary 
notation which is corresponding to inputs

Opposite function to decoder
The output value under multiple input is undefined

in0  in1  in2  in3   out1 out0
1     0     0     0      0      0
0     1     0     0      0      1
0     0     1     0      1      0
0     0     0     1      1      1
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Priority encoder

The encoder which gives 
priority to specified order

It can tolerate multiple inputs
e.g. The priority encoder which 
has priority to smaller inputs

in0  in1  in2  in3   out1 out0
1     0     0     0      0      0
0     1     0     0      0      1
1     1     0     0      0      0
0     0     1     0      1      0
1     0     1     0      0      0
0     1     1     0      0      1
1     1     1     0      0      0
0     0     0     1      1      1
1     0     0     1      0      0
0     1     0     1      0      1
1     1     0     1      0      0
0     0     1     1      1      0
1     0     1     1      0      0
0     1     1     1      0      1
1     1     1     1      0      0

Priority encoder which
has priority to smaller inputs
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Reading table with decoder and 
multiplexer (1/2)

We can read data in table organization by utilizing 
decoder and multiplexer

As shown in Chap. 5, we can minimize storage by utilizing table 
organization

3 2 1 0
7 6 5 4

11 10 9 8
15 14 13 12

4-1 MUX

Reading data in
6th (0110) entry

0110

D
ec

od
er
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Reading table with decoder and 
multiplexer (2/2)

Operation
Select row by inputting higher side bits into decoder
Select column by inputting lower side bits into 4-1 MUX

Widely used in RAM, flash memory, and so on

3 2 1 0
7 6 5 4

11 10 9 8
15 14 13 12

4-1 MUX

Reading data in
6th (0110) entry

0110

D
ec

od
er
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Outline

Data path controlling circuits
Multiplexer/demultiplexer
Buffer/Three state buffer/Bi-directional buffer
Encoder/decoder

Arithmetic circuits
Adder 
Comparator/Majority vote
Shifter
Multiplier
Divider
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How to design arithmetic circuits?

From 1-bit arithmetic to multi bit arithmetic
Design and optimize 1-bit module

Under considering expansion to multi bit
Create multi bit circuit by utilizing 1-bit module

Similar to create program with function call

Special technique for optimizing arithmetic circuits
Utilize characteristic of binary integer
Optimize under usual algebra

……
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The notation of integer in binary

We can represent 0 to 2n-1 integer with n-bit 
binary notation (if we consider positive value)

We use twos complement to represent signed 
integer (detail: subtraction circuit)

We can represent it -2n-1 to +2n-1-1
e.g. 8-bit signed integer with twos complement can 
represent from -128 to +127

0 0 0 1 1 1 0

202122232n-1 Add weight to each
digit14 ...

2n-2
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Addition of binary integer

Addition of 1-bit
0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 10

By considering carry, an addition of one digit 
becomes addition of three 1-bit

Addition of augend (a), addend (b), and carry (c)

Carry

11110
1101
1011

11000
+)

Carry c_in
c_out  a
sum   b

c_in
c_out  a
sum   b

0
1
1

0

1

1
0

1

0 0th bit1st bit



12

Hardware Design I (Chap. 4) 23
Computing Architecture Lab.

Hajime Shimada

Addition of binary integer

Generalized notation of n-bit binary integer
The result becomes (n+1)-bit binary integer
c0 = 0
cn = sn

+)

cn cn-1 cn-2 ... c1 c0
an-1 an-2 ... a1 a0
bn-1 bn-2 ... b1 b0

sn sn-1 sn-2 ... s1 s0
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1-bit full adder

Definition of the circuit
Inputs: two 1-bit binary and 1-bit 
carry input from lower digit
Operation: sum all of inputs
Outputs: sum and carry output

Half adder
An adder which has no carry 
input

a  b c_in   c_out  sum

0  0   0         0       0
0  0   1         0       1
0  1   0         0       1
0  1   1         1       0
1  0   0         0       1
1  0   1         1       0
1  1   0         1       0
1  1   1         1       1

a       b 
c_out c_in 

sum
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Implementation of half adder

Usually implemented with XOR gate
Much smaller gate number than AND-
OR organization

a  b   c  s

0  0   0  0
0  1   0  1
1  0   0  1
1  1   1  0

a

b

s

c

a

b

s

c
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Implementation of full adder

We can create full adder with half adder
Usually, the path of carry generation becomes 
critical path

Critical path: the path has longest route

a

b

c

s

half adder

a

b

c

s

half adder

a

b
c_out

sumc_in
Path of carry generation
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n-bit ripple carry adder

An adder which layouts n of 1-bit full adder
Called ripple carry adder (RCA)

The calculation time is in proportion to n

(an-1an-2 ... a0) + (bn-1bn-2 ... b0)

a       b 
c_out c_in 

sum

a      b 
c_out c_in 

sum

a      b 
c_out c_in 

sum

a      b 
c_out c_in 

sum

a0 b0a1 b1a2 b2an-1 bn-1
0

s0s1s2sn-1

c1c2
c3cn

...
c0
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The RCA is slow

Why RCA is slow?
c5 will be defined after c4 has defined
c4 will be defined after c3 has defined
...

->c5 is defined under sequential definition
n-bit addition requires O(n) time

Definition of O(n):

11110
1101
1011

11000
+)

•Assuming function f(n) and G(n)
•f(n) = O[g(n)] if constant c and n0 which satisfy f(n) ≦c・g(n), n≧n0 
•Note that f(n) > 0, g(n) > 0
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Carry look-ahead adder

The critical point is carry
Are there any way to speeding up carry 
generation? 
Idea: separate carry to two category

Generation of carry: gi = ai・bi
The carry must occur in this digit

Propagation of carry: pi = ai + bi
The carry will occur if carry from (i-1) has arrived

Note that the generation of gi and pi are easy

Assuming (an-1an-2 ... a0) + (bn-1bn-2 ... b0)
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Extracting carry with gi, pi, and c0

Cn becomes n+1 sum of term of n+1 literal

c1= g0+p0c0

c2= g1+p1c1

c3= g2+p2c2

cn= gn-1+pn-1cn-1

-> c2= g1+p1g0+p1p0c0

-> c3= g2+p2g1+p2p1g0+p2p1p0c0

-> c4= g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0...

-> cn= gn-1+pn-1gn-2+pn-1pn-2gn-3+…
+pn-1 ••• pkgk-1 +…+ pn-1•••p0c0

Calculated without c1
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The condition which Cn becomes 1

Sum of later itemize
gn-1 = 1
gn-2 was propagated after n-1 digit (=pn-1)
gn-3 was propagated after n-2 digit (=pn-1・ pn-2 )

……
gk-1 was propagated after k digit

…….
c0 was propagated through all digits

cn= gn-1+pn-1gn-2+pn-1pn-2gn-3+…+pn-1 ••• pkgk-1 +…+ pn-1•••p0c0
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4-bit CLA

g3p3 g2 g1 

c0 

g0 p2 p1 p0

c1 c2 c3 c4 
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The characteristic of CLA

It can calculate ci in parallel
Much complicated than RCA
Calculation time becomes O(log n)

cn becomes sum of n+1 term
Each term is consist of n+1 literals

-> If we implement it with balance tree, the height 
becomes log n
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Quiz

How long does CLA requires to calculate 64-bit 
value with NAND2 gate delay?
1. Around 8 NAND2 gate delay
2. Around 12 NAND2 gate delay
3. Around 16 NAND2 gate delay
4. Around 20 NAND2 gate delay

64-bit RCA requires around 129 NAND2 gate 
delay
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Answer

2. Around 12 NAND2 gate delay
1 NAND2 delay for prepare pi and gi
About 8 NAND2 delay for prepare ci from pi and gi
3 NAND2 delay for calculate si

Result of practical implementation
Alpha 21264 processor utilizes 12 FO4 delay for each 
pipeline stage
It execute 64-bit arithmetic in 1 pipeline stage

pipeline stage ->Chap. 11
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Explore of faster adder

Adder is one of the important circuit so that 
there’s many implementations
Examples

Carry select adder
Conditional sum adder
Carry skip adder
Carry bypass adder
Carry complete adder
Domino logic adder for Pentium 4
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Outline of domino logic

Operate with precharge and evaluation 
(=discharge)

If input satisfies condition, output is discharged
e.g. Domino logic XOR gate 

Precharge

a

b

a

b

a

b

a

b

a

b

a

b
0

0

0

0

1

1

1

1

(a,b) = (1,0) (a,b) = (0,1)

D
is

ch
ar

ge

D
is

ch
ar

ge

0->1 1->0 1->00 1 1

Otherwise, 
the output is 

not discharged
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Twos complement (1/2)

A method which gives negative weight for most 
significant bit

e.g. Twos complement with 8-bit width
0 0 0 1 1 1 0

20212223-2n-1

...
2n-2

0 0 0 0
20212223

1 0 0 0
242526-27

0 0 0 11 0 0 0

0 0 0 10 0 1 0

1 1 1 10 1 1 1

= -27 = -128

= -27 + 20 = -127

= 26 + 20 = 65

= 26 + 25 +...+ 20 = 127
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Twos complement (2/2)

We can represent -2n-1 to +2n-1-1 
e.g. Twos complement with 8-bit 
width

Why we do not use independent 
sign bit?

It creates “positive 0” and “negative 
0”
-> redundant!!!

0 000000000000000   “positive 0”

1 000000000000000   “negative 0”

Independent sign bit

00000001  “+1”
00000000  “0”
11111111  “-1”

10000000  “-128”

01111111  “+127”

...
...

...
...

Example of 8-bit width
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How to create twos complement?

You can gain inverse sign of twos complement 
by negating all bits and add 1 to it

Why it becomes twos complement?
A negation of m becomes -2n-1 + (2n-1-1) - m
By adding 1 to above one, we can gain -m
Note that -m = -2n-1+(2n-1-m) = -2n-1+{(2n-1-1)-m+1}

Negation

Negation Add 1

Add 1
01111111 = 127

10000000

10000001 = -127

01111110
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Subtraction with twos complement

Create twos complement of subtrahend and add it with 
adder
Organization of the circuit

Negate all bits before adder
“+1” is done by adding carry to c0

(an-1an-2 ... a0) - (bn-1bn-2 ... b0)

a       b 
c_out c_in 

sum

a      b 
c_out c_in 

sum

a      b 
c_out c_in 

sum

a      b 
c_out c_in 

sum

a0 b0a1 b1a2 b2an-1 bn-1
1

s0s1s2sn-1

c1c2
c3cn

...
c0
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The sign bit after adding positive and 
negative values

Assume signed 8-bit world
If carry in and carry out of the sign bit are same, you only 
have to add them

1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0

+)
-1
+3
+21

1 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1
1 1 0 0 0 0 1 0

+)
-65
+3
-62

1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1
1 0 0 0 0 0 1 0

+)
-1
-125
-1261

0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1
0 1 0 0 0 0 1 0

+)
+63
+3
+66

0

0

1 0

1 0
1 0

1 0

Equal Equal

EqualEqual
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0

The sign bit after adding positive and 
negative values

Sign bit: equals to most left bit (MSB: most significant bit)
If carry in and carry out of the sign bit are different, you 
have to treat it overflow
The result exceeds range which can be represented with 
signed 8-bit

From -128 to +127

0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1+)

+127
+3
-126

1
1 0 1 1 1 1 1 1
1 0 0 0 0 0 1 1
0 1 0 0 0 0 1 0

+)
-65
-125
+661

Wrong result0

0 1 0 0 0 0 0 1 0
True result is +130 True result is -1901

DifferentDifferent Wrong result
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Short exercise

Show arithmetic result under signed 8-bit world
Show both binary and decimal notation
Notate “overflow” if it occurs

1 0 1 1 1 1 0 1
0 0 1 0 0 0 1 1+)

-67 
+35

0 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1+)

+63
+127
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Answer

1 0 1 1 1 1 0 1
0 0 1 0 0 0 1 1
1 1 1 0 0 0 0 0

+)
-67 
+35
-32

0 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 0

+)
+63
+127
-660 0

•Overflow!
•True result is +190
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Unify adder and subtracter

We can unify adder and subtracter
Control signal provide carry for least bit which is 
required to create twos complement

Negation of each bit

n

n
MUX

n

n

n

Control signal

Carry for least bit

0: adding
1: subtracting

a b
Notation method of 
“n-bit width signal”

Adder
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...

ALU (Arithmetic Logic Unit)

Usually, we implement multiple arithmetic function to one 
circuit 
We can share logic gates between arithmetics

e.g. AND/XOR operation of a and b are partial result of half 
adder
We can save number of logic gates

a b

Control
(add, sub, compare,
and, or, xor,...)

8 8

8

ALU
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1-bit right shift

Movie 1 digit to right
Least significant bit (LSB) is banished
MSB differs between shift method

Logical shift: insert 0
Arithmetic shift: insert prior MSB

The result becomes divided by 2
e.g. 00000111(+7) -> 00000011(+3)
e.g. 11111010(-6) -> 11111101(-3)

Achieved with only wire connection

1 0 1 0 1 0 1 1

0 1 0 1 0 1 0 1

0

Logical shift:
Arithmetic shift: 1 1 0 1 0 1 0 1

Copy
Insert
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1-bit left shift

Movie 1 digit to right
MSB is banished
0 is inserted into LSB

The result becomes multiplied by 2
e.g. 00000111(+7) -> 00001110(+14)
e.g. 11111010(-6) -> 11110100(-12)

Also achieved with only wire connection
You have to consider overflow if you execute arithmetic 
shift

e.g. 10000000(-128) -> 00000000(0) Overflow!

1 0 1 0 1 0 1 1

1 0 1 0 1 0 1 0

0
Insert
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1-bit rotate left (or right)

1-bit rotate left
Move 1 digit to left
MSB is moved to LSB

1-bit rotate right
Move 1 digit to right
LSB is moved to MSB

1 0 1 0 1 0 1 1

1 0 1 0 1 0 1 1

1 0 1 0 1 0 1 1

1 1 0 1 0 1 0 1

Rotate left

Rotate right
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Barrel shifter

A circuit which can achieve arbitrary shift
Usually, it permits several shift related operations

n-bit shift gives result of multiplied by 2n or 
divided by 2n

Barrel shifter

i7 i6 i5 i4 i3 i2 i1 i0

o7 o6  o5 o4 o3 o2  o1 o0

c2c1c0
right/left

arithmetic/logical

Shift amount
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One implementation of barrel shifter

Creating logical expression of each outputs and 
construct two level logic
e.g. o3 = r_l’(i0・c1・c0+i1・c1+i2・c0) + c2・c1・c0

+ r_l (i4・c0+i5・c1+i6・c1・c0+i7・c2)
Assuming r_l = 1 under right shift

Barrel shifter

i7 i6 i5 i4 i3 i2 i1 i0

o7 o6  o5 o4 o3 o2  o1 o0

c2c1c0
right/left
(r_l)

Shift amount
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The other implementation of barrel shifter

Cascaded MUX which selects 2n bits right shift, 2n bits 
left shift, or no shift
The length of critical path becomes long

MUX

0     i7 i6 i5 i4 i3 i2 i1 i0 0

o7 o6 o5 o4 o3 o2 o1 o0

c0
right/left

MUXc1

MUXc2

right/left

right/left
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Example of operation

3-bit right shift

MUX

0     i7 i6 i5 i4 i3 i2 i1 i0 0

o7 o6 o5 o4 o3 o2 o1 o0

c0
right/left

MUXc1

MUXc2

right/left

right/left

1
1
1
1

0
1
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...

Equivalent comparator

1-bit equivalent comparator becomes XNOR
n-bit equivalent comparator

AND of all digits
Equivalent if all digits are equivalent

Place AND gate with balanced tree

a  b   out
0  0     1
0  1     0
1  0     0
1  1     1

bn-1

an-1

b2

a2

b1

a1

b0

a0...
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Comparator for grater than, less than, 
grater equal, and less equal (1/2)

1-bit comparison
a>b (GT: grater than)  ->  f = a b’
a>=b (GE: grater equal)   ->  f = a+b’

Abbreviation of compare or 
comparator: cmp
Similarly, less than and less equal 
function will be implemented

Also, we can exchange inputs and 
evaluate with GT and GE

Prepare MUX at input side of comparator

a  b   GT   GE
0  0     0     1
0  1     0     0
1  0     1     1
1  1     0     1 

cmp

MUX MUX

a b
grater
/less
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Comparator for grater than, less than, 
grater equal, and less equal (2/2)

In multi-bit implementation, the result of 
higher digit is selected
Prepare a logic which conduct

Propagate lower result if ai=bi

Propagate 0 if inputs ai<bi

Propagate 1 if inputs ai>bi

0 0 1 0 1 0 1
0 0 1 0 0 0 1

1 01

0 0 1 0 1 0 1
0 1 1 0 0 0 1

1 00 0

0

a
b

a
b

a  b  Rout
0  0   Rin
0  1   0
1  0   1
1  1   Rin

RinRout

bn-1an-1

1-bit cmp RinRout

biai

1-bit cmp Rout
1-bit cmp

b0a0
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Comparison with subtraction circuit

If the result of a-b is positive, a>b is approved
Check MSB under twos complement arithmetic
If the n-bit value is unsigned value, you have to check 
with (n+1)bit value arithmetic

If the result of a-b is zero, a=b is approved
If you implement cmp into ALU, you can use this 
method
Dedicated cmp is used in dedicate purpose 
hardware



30

Hardware Design I (Chap. 4) 59
Computing Architecture Lab.

Hajime Shimada

Multiply

1-bit multiply is the same to AND
0 x 0 = 0, 0 x 1 = 0, 1 x 0 = 0, 1 x 1 = 1

n-bit multiply becomes n of n-bit addition
Iteration of 1-bit shift and addition
The output becomes (2xn)-bit binary

1011
0101
1011

0000
1011

0000
0110111

×)

+)

A = an-1 an-2 ... a1 a0
B = bn-1 bn-2 ... b1 b0

×)

A x b0
A x b1 x 2

A x b2 x 4 1-bit left shift
2-bit left shift
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Example of 4-bit multiply

(a3 a2 a1 a0) x (b3 b2 b1 b0)

a3 a2 a1 a0

b3 b2 b1 b0

a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3

z7 z6 z5 z4 z3 z2 z1 z0

x)

+)

The result of 1-bit
multiply (AND)
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Array multiplier

Align adder to array
The operation time becomes O(n)

a3 a2 a1 a0

b3 b2 b1 b0

a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3

z7 z6 z5 z4 z3 z2 z1 z0

x)

+)

Carry

Note that
represents adder
(3-input 2-output)
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Outline of Wallace tree multiplier

One digit of n-bit multiply becomes summation 
of n binaries
If we utilize carry save adder, we can construct 
3-2 arithmetic tree
1. Group 3 binaries from summation of n and apply 

carry save addition
2. The result becomes summation of (2/3 x n) 
3. Back to 1. until the summation becomes summation 

of 2 (usual addition)
It can operate multiply with O(log n)
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Carry save adder (CSA)

An array of n full adders
Output sum of 3 binary inputs (2 binary outputs)

There’s no carry propagation
Operation time is constant (independent to number of inputs)

It can quickly translate sum of 3 binaries to sum of 2 
binaries

an-1 an-2 ...  a1 a0

bn-1 bn-2 ...  b1 b0

cn-1 cn-2 ...   c1 c0

dn dn-1 dn-2 ...  d1 d0

en en-1 en-2 ... e1 e0

+)

a       b
c_out c_in

sum

an-1 bn-1

dn-1

...

cn-1

en-1en

a       b
c_out c_in

sum

a1 b1

d1

c1

e1

a       b
c_out c_in

sum

a0 b0

d0

c0

e2

No relationships
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3-2 Wallace tree multiplier

a3 a2 a1 a0

b3 b2 b1 b0

a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3

z7 z6 z5 z4 z3 z2 z1 z0

×)

+) CLA

CSA1

CSA1 CSA2 CLA

CSA2
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Example of 8-bit multiply

Number of summation becomes 2/3 under one CSA
After O(log n) of CSAs, it becomes sum of 2 binaries
A = a7 a6 ... a1 a0
B = b7 b6 ... b1 b0

x )

A x b0
A x b1 x 2

A x b2 x 4
A x b3 x 8

A x b4 x 16
A x b5 x 32

A x b6 x 64
A x b7 x 128

CSA

CSA

CSA

CSA CSA CSA

Apply CLA at final
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Division

Implement computation on paper frankly
e.g. 107 divided by 3

0110101100000011
0

0110101100000011

001

000000110000000-)
01101011

Cannot subtract 110000000

00000011 x 27

(7-bit left shift)

000000110000000-)
01101011

00000011000000-)
01101011

0000001100000-)
0000000001011

6-bit left shift

5-bit left shift

Can subtract 1100000

Cannot subtract
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How to represent it to circuit?

Implement “computation on paper” frankly
Usually, it becomes sequential circuit (Chap. 6)
If we achieve it with combinational logic, it requires 
much adders 

How to implement subtractable or not
Firstly subtract and evaluate whether the result is 
negative value or not

Constructed with subtracter and checking MSB

If the value underruns 0, how do we treat it?
Restoring method: add divisor to dividend
Non-restoring method: detail is shown in later slide
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0000000001101011

Restoring method

If MSB of dividend after 
subtraction is 1, it adds 
divisor to restore
In worst case, it requires 
twice adder per each digit
Operation time becomes 
O(2n)
e.g. 107 divided by 3

3 is denoted as 0...0011 and 
-3 is denoted as 1...1101

0110101100000011

001

1111111010000000+)

0000000001101011
1111111101000000+)
1111111110101011
0000000011000000+)

Add to 
restore

Add to 
restore

1111111011101011
+) 0000000110000000

1111111110100000+)
0000000000001011
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Non-restoring method

If temporal dividend becomes negative, this method 
adds following shifted dividend
If temporal dividend is positive

Subtract shifted dividend
Quotient becomes 1 if result is positive, otherwise 0

If temporal dividend is negative
Add shifted dividend
Quotient becomes 1 if result is positive, otherwise 0

In some case, we have to compensate reminder
Operation time becomes O(n)
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Example of non-restoring method

Let’s assume 37 divided by 6
6 is denoted as 0110 and -6 is denoted as 1010

0 0 1 0 0 1 0 1 37
1 1 0 1 0 0 0 0-6x23

1 1 1 1 0 1 0 1
Quotients

0
0 0 0 1 1 0 0 0+6x22

1 0 0 0 0 1 1 0 11
1 1 1 1 0 1 0 0-6x21

1 0 0 0 0 0 0 0 11
1 1 1 1 1 0 1 0-6x20

1 1 1 1 1 0 1 10

1 1 1 1 1 0 1 1
0 0 0 0 0 1 1 0

If reminder becomes 
negative, correct 
remainder by adding +6

1 0 0 0 0 0 0 0 1

Remainder (=1)

-48
-11
+24
13
-12
1

-6

6
(0110)
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Utilizing higher radix under division

We can speedup division by utilizing higher radix
Prior division is radix-2 division

Only prepare n left shifted divisor
e.g. radix-4 division

Prepare following divisor
1. n left shifted
2. n+1 left shifted
3. (n left shifted) + (n+1 left shifted)
Subtract above three from dividend
Get 2-digit of quotient simultaneously

Quotient becomes 00 if all of them are not subtractable
Quotient becomes 01 if only 1. is subtractable
Quotient becomes 10 if 1. and 2. are subtractable
Quotient becomes 11 if all of them are subtractable
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Quiz

What is the correct organization of 8-1 MUX?
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Answer

Both 1 and 4 are correct answer
1 is based on AND-OR logic gate based organization
4 is based on transmission gate based organization
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