
1

1

Hardware Design I Chap. 9
Cell base design and

programmable hardwares

Computing Architecture Lab.
Hajime Shimada

E-mail: shimada@is.naist.jp

Hardware Design I (Chap. 9) 2
Computing Architecture Lab.

Hajime Shimada

Abstract of this chapter

This chapter treats procedure after we designed
logic circuits

Convert virtual circuit to actual circuit

x z

y

Logic circuit

2

Hardware Design I (Chap. 9) 3
Computing Architecture Lab.

Hajime Shimada

Outline

Cell base design
Cell base design
Technology mapping

Field programmable gate array (FPGA)
Old programmable devices
Organization of FPGA
LUT based FPGA
Synthesis for FPGA

Hardware Design I (Chap. 9) 4
Computing Architecture Lab.

Hajime Shimada

Cell base design

How to map designed circuits to silicon surface?
Do we have to place with transistor level?
-> No. Because it requires too much workload

We usually utilize slightly abstracted method

Silicon area efficiency reduces slightly, but design
complexity reduces largely

Cell base design

3

Hardware Design I (Chap. 9) 5
Computing Architecture Lab.

Hajime Shimada

Outline of logic cell

Widely used in current custom circuit design
Place logic gate cell (or logic cell) which is
constructed by placing FET in prior

Vertical size is constant
Increases horizontal side if we implement large logic gate

Each cell has already optimized
Widely used cell are provided as library

We can improve performance if library has updated

Similar to logic cell, several pre-designed
hardware is provided (e.g. RAM array macro)

Hardware Design I (Chap. 9) 6
Computing Architecture Lab.

Hajime Shimada

Detail of logic cell

INV(NOT) AOI21
Wire supplies Vdd

Wire supplies GND

Poli-silicon gate

pMOS side

nMOS side

Contact hole to
silicon surface Wire connects

node between FETs

Please compare with
FET introduction in
Chap. 1

Contact hole to
gate poly-silicon

4

Hardware Design I (Chap. 9) 7
Computing Architecture Lab.

Hajime Shimada

IN
VOAI21

N
A

N
D

2

OR2

IN
V

AOI22

NAND3OR2

N
A

N
D

2

IN
V

Placing logic cells on the grid

We don’t have to consider power supply network
We only have to place them to top and bottom of glid

We can easily to estimate total area
Usually, we normalize with NAND2 area

IN
V

IN
V

N
A

N
D

2

Wire supplies Vdd

Wire supplies GND

Wire connects
node between FETs

Hardware Design I (Chap. 9) 8
Computing Architecture Lab.

Hajime Shimada

Combinational devices

Some cell library contains combinational devices
for area efficiency implemenation
AOI22 (And-Or-Inverter 2-inputs and 2-inputs)

OAI21 (Or-And-Inverter 2-inputs and 1-input)

Combinational divice are smaller than combination of those gates

5

Hardware Design I (Chap. 9) 9
Computing Architecture Lab.

Hajime Shimada

Why combinational devices are small?

By optimization
Don't have to consider fan-out and
fan-in constraint in it

By balanced organization
Total width of pMOS side and nMOS
side are balanced

AOI21

Hardware Design I (Chap. 9) 10
Computing Architecture Lab.

Hajime Shimada

Technology mapping

Mapping designed circuit to logic devices (cells)
Characteristic of logic cells differ between semiconductor
vendor or customize of library

List of usable logic cells (50-100 in usual)
Delay/area of each logic cell

Usually, delay is normalized by FO4 delay (fan-out 4 inverter delay)
Usually, area is normalized by λ(half of minimum processing width)

Maximum current drive ability, ...

Type Delay Power
NAND2 2 6
XOR2 5 14

...

e.g. for high performance
Type Delay Power

NAND2 3 3
XOR2 7 6

...

e.g. for low power

6

Hardware Design I (Chap. 9) 11
Computing Architecture Lab.

Hajime Shimada

OR2

OR2

Example of technology mapping (1/2)

The area of circuit differs between mapping
Example 1: Total area is 19

NAND3
Cell Area Num.Total
INV 1 2 2

NAND2 2 4 8
NAND3 3 1 3

OR2 3 2 6
Total 9 19

Hardware Design I (Chap. 9) 12
Computing Architecture Lab.

Hajime Shimada

OAI21

NAND3

Example of technology mapping (2/2)

The area of circuit differs between mapping
Example 2: Total area is 15

Cell Area Num.Total
INV 1 1 1

NAND2 2 1 2
AND2 3 1 3

NAND3 3 1 3

Total 6 15

OAI21
OAI21 3 2 6

AND2

7

Hardware Design I (Chap. 9) 13
Computing Architecture Lab.

Hajime Shimada

Flow of technology mapping

1. Create pattern graph from library
2. Translate given circuit to NAND2 and INV

Called subject graph
3. Cover subject graph by pattern graph

Hardware Design I (Chap. 9) 14
Computing Architecture Lab.

Hajime Shimada

Creating pattern graph

Pattern graph: Normalized notation by NAND2
and INV

AO22

AO222

NAND3

NAND4

NAND4

NAND2

8

Hardware Design I (Chap. 9) 15
Computing Architecture Lab.

Hajime Shimada

Creating subject graph

Translate multi level circuit to NAND2 and INV
Multiple input gate is decomposed to multiple 2-input
gates

AND and OR are represented by NAND and INV

Hardware Design I (Chap. 9) 16
Computing Architecture Lab.

Hajime Shimada

Graph based covering

1. Divide graph with fan-out
Remove reconvergence point

2. Mapping trees independently
If there are several possible mapping, select best
one
Consider to reduce delay of critical path

1

2
3

4

5
6

1

2
3

4

5
6

Graph Group of trees

9

Hardware Design I (Chap. 9) 17
Computing Architecture Lab.

Hajime Shimada

Example of graph division

Divide with fan-out
To remove reconvergence point
To create usable connection point

Hardware Design I (Chap. 9) 18
Computing Architecture Lab.

Hajime Shimada

Mapping with tree covering (1/4)

Try possible mapping and calculate cost
The cost propagates from inputs to output

Cell Cost
INV 1

NAND2 2
NAND3 3
AO22 4

10

Hardware Design I (Chap. 9) 19
Computing Architecture Lab.

Hajime Shimada

Mapping with tree covering (2/4)

Apply mapping to level 1 and calculate costs

NAND2,2

NAND2,2

NAND2,2

Sum of costs

Cell Cost
INV 1

NAND2 2
NAND3 3
AO22 4

Hardware Design I (Chap. 9) 20
Computing Architecture Lab.

Hajime Shimada

Mapping with tree covering (3/4)

Two possible mapping is shown in upper side
Cost differs between them

NAND2,2 INV,3

NAND2,2

NAND2,2

NAND2,6
AO22,4

Cell Cost
INV 1

NAND2 2
NAND3 3
AO22 4

Sum of costs

Sum of costs

11

Hardware Design I (Chap. 9) 21
Computing Architecture Lab.

Hajime Shimada

Mapping with tree covering (4/4)

Two possible mapping is shown in lower side
Utilize AO22 and NAND3 becomes best

NAND2,2 INV,3

NAND2,2

NAND2,2

NAND2,6
AO22,4

NAND2,9
NAND3,7

Cell Cost
INV 1

NAND2 2
NAND3 3
AO22 4

Omit

Used
for
calc.

Hardware Design I (Chap. 9) 22
Computing Architecture Lab.

Hajime Shimada

Short exercise

Apply tree covering to following circuit
Pattern graphs are shown on slide 8, 14, and 15

Cell Cost
INV 1

NAND2 2
NAND3 3

OR2 3
AOI22 4
AO22 4
OAI21 3

Hint: Must be divided at this point

12

Hardware Design I (Chap. 9) 23
Computing Architecture Lab.

Hajime Shimada

Answer

Cell Cost
INV 1

NAND2 2
NAND3 3

OR2 3
AOI22 4
AO22 4
OAI21 3

Must be divided at this pointNAND2, 2

OR2, 2 NAND3, 8

NAND2, 10

NAND2, 2

NAND2, 10

OAI21, 5

INV, 6

NAND2, 8

Hardware Design I (Chap. 9) 24
Computing Architecture Lab.

Hajime Shimada

Outline

Cell base design
Cell base design
Technology mapping

Field programmable gate array (FPGA)
Old programmable devices
Organization of FPGA
LUT based FPGA
Synthesis for FPGA

13

Hardware Design I (Chap. 9) 25
Computing Architecture Lab.

Hajime Shimada

Hardware, software, and programmable
hardware

Hardware
High speed and low power consumption
Fixed function

Design is not so easy

Software (on processor)
We can change operation easily
Low speed and high power consumption

Programmable Hardware

Are there any hardware which
we can design function easily?

Hardware Design I (Chap. 9) 26
Computing Architecture Lab.

Hajime Shimada

What’s programmable hardware?

LSI that user can define logic after
semiconductor manufacture process
There are several style programmable
hardwares

Programmable Logic Array (PLA)
Complex Programmable Logic Device (CPLD)
Field Programmable Gate Array (FPGA) Widely used!

14

Hardware Design I (Chap. 9) 27
Computing Architecture Lab.

Hajime Shimada

Programmable Logic Array (PLA)

Create AND-OR two level logic with wire connection
Connection is controlled with fuse

Apply programming for once

a’b’c
a’d

b’c’

a b dc
O1= a’b’c+a’d

O2 = a’d+b’c’
O3 = a’b’c+b’c’

AND
plane

OR
plane

Fuse
Current

melt!

Hardware Design I (Chap. 9) 28
Computing Architecture Lab.

Hajime Shimada

Functionality of PLA

Create arbitrary two level combinational logic with
connection under AND plane and OR plane

NOT
AND

OR

O1 O2 O3a b dc

CPLD
->implement
multiple PLA
in one chip

15

Hardware Design I (Chap. 9) 29
Computing Architecture Lab.

Hajime Shimada

Field Programmable Gate Array (FPGA)

Most widely used programmable
hardware in recent years
Utilizing Look Up Table (LUT) for unit of
logic is current trend

LUT: A circuit which can realize arbitrary 3-5
inputs

Widely used for prototyping
Or small-lot production
Or temporary use until ASIC comes

In recent years, some of them can
change organization of implemented
hardware under processing data

Hardware Design I (Chap. 9) 30
Computing Architecture Lab.

Hajime Shimada

Outlined organization of FPGA using LUT

Wiring area (global wire)

Input/output element

clock

LUT FF

in1
in2
in3
in4

sel

out

Configurable Logic Block(CLB)

16

Hardware Design I (Chap. 9) 31
Computing Architecture Lab.

Hajime Shimada

Detail of network FPGA

There are two
connection points

Global wire and global
wire (switch matrix)
Global wire and wire to
CLB

Wires are connected
with path transistor

Connection is controlled
by value of memory
By writing value to
memory, we can change
connection state 1-bit

memory

CLBCLB
G

C

CLOCK

F

F

1

1

1

F 4 C 4 G 4 Q 2

F 2 C2 G 2Q 1

G

G

C

F

3

3

3

Switch
matrix

Detail of
interconnect

Hardware Design I (Chap. 9) 32
Computing Architecture Lab.

Hajime Shimada

Additional futures for FPGA

Inner CLB
Implement 4-input LUT with two 3-input LUT (convenient for
implementing adder)
Prepare high-speed carry line

Specialized block
Prepare SRAM memory block for temporal data storage
Prepare specialized block (e.g. multiplier, high speed I/O, CPU,
DSP, ...)

Function of blocks
Some FPGA accept updating under operation
Some FPGA accept partial reconfigure

17

Hardware Design I (Chap. 9) 33
Computing Architecture Lab.

Hajime Shimada

Organization of LUT

By assuming RAM based LUT organization,
you can easily to estimate its function

e.g. It outputs 1-bit output from correspoinding
4-bit address

LUT is also achieved by ROM or
multiplexer

Look Up Table
with ROM/RAM/

multiplexer

Input
(=Address)

Data
A
B
C
D

Z

ABCD Z
0000 0
1000 1
0100 1
1100 0
0010 1
1010 1
0110 0
1110 1
0001 1
1001 0
0101 1
1101 1
0011 0
1011 1
0111 1
1111 0

Content of RAM

Hardware Design I (Chap. 9) 34
Computing Architecture Lab.

Hajime Shimada

Represent logical expression with LUT

We can implement arbitrary logical
function with LUT

Achieve 22n = 65536 function with 4-input LUT

ABCD Z
0000 0
1000 1
0100 1
1100 0
0010 1
1010 1
0110 0
1110 1
0001 1
1001 0
0101 1
1101 1
0011 0
1011 1
0111 1
1111 0

A
B

C
D

Z
Equivalent

Complecated function

Achieved by one 4-input LUT

18

Hardware Design I (Chap. 9) 35
Computing Architecture Lab.

Hajime Shimada

How to map logic circuit to LUT based
FPGA?

Logic design for LUT based FPGA is defined as
follows

Input: logical expressions
Output: Mapping information to LUT and their
connections

How to map logic circuit to LUT based FPGA?
Technology mapping based method
Function decomposition based method

Hardware Design I (Chap. 9) 36
Computing Architecture Lab.

Hajime Shimada

Technology mapping based method (1/2)

1. (Optimize logical circuit and translate to tree)
2. Decompose node to less than n-inputs

n equals to size of LUT (n-input LUT)

3. Cover tree with n-input partial circuit

LUT1

LUT2

LUT3

ABC f
000 0
001 0
:
100 1
:
110 0
111 0

e.g. cover with 4-input LUT

Content of LUT1
(Excluding D)

19

Hardware Design I (Chap. 9) 37
Computing Architecture Lab.

Hajime Shimada

Technology mapping based method (2/2)

LUT1

LUT2

LUT3

LU
T

FF

LU
T

FF LU
T

FF

LUT1

LUT2 LUT3

If we map two level logic, we utilize path
through flip-flop in CLB

Hardware Design I (Chap. 9) 38
Computing Architecture Lab.

Hajime Shimada

Redundancy in technology mapping
based method

There’s redundant point in technology mapping based
method. Where is it?

1. (Optimize logical circuit and translate to tree)

Because there’s no cost difference if the logical
expression is represented by same number of LUT

e.g. There’s no cost difference between following logical
expression when we use 4-input LUT

f = a’bcd + ab’cd + abc’d + abcd’
f = abcd

20

Hardware Design I (Chap. 9) 39
Computing Architecture Lab.

Hajime Shimada

Bad example on technology mapping
(1/2)

Let’s consider following logical expression

Reduce literals before technology mapping

f = x3' (x2 x4' + x2' x4) (x1 x5' + x1' x5)
+ x3 (x2' x4' (x1' x5' + x1 x5) + x1' x2 x4 x5')

f = x1 x2 x3' x4' x5' + x1' x2 x3' x4' x5 + x1' x2' x3 x4' x5‘
+ x1 x2' x3 x4' x5 + x1 x2' x3' x4 x5' + x1' x2' x3' x4 x5
+ x1' x2 x3 x4 x5'

Hardware Design I (Chap. 9) 40
Computing Architecture Lab.

Hajime Shimada

Bad example on technology mapping
(2/2)

Consider mapping them with 3-input LUT

It requires 11 3-input LUTs

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6 LUT8

LUT10LUT9

LUT11

LUT7

21

Hardware Design I (Chap. 9) 41
Computing Architecture Lab.

Hajime Shimada

Function decomposition based method
(1/2)

Decompose function into function which has limited
number of variables

f(X, Y) -> g(X, h(Y))
The number of variables must be smaller than inputs of LUT

e.g. decompose function into less than 3 variables
f = x1 x2 x3' x4' x5' + x1' x2 x3' x4' x5 + x1' x2' x3 x4' x5‘

+ x1 x2' x3 x4' x5 + x1 x2' x3' x4 x5' + x1' x2' x3' x4 x5
+ x1' x2 x3 x4 x5'

f = (x1 + x2 + x3) · (x2⊕ x3 ⊕ x4) · (x1⊕ x3 ⊕ x5)
3 variables 3 variables 3 variables

Hardware Design I (Chap. 9) 42
Computing Architecture Lab.

Hajime Shimada

Function decomposition based method
(2/2)

By mapping decomposed function, we can reduce
number of LUT

Prior example can be implemented with 4 3-input LUTs

LUT1

x1

AND

x4

x3

x2
XOR

XOR
AND

x5

x3

x1
XOR

XOR

x3

x2
OR

OR

LUT2

LUT3

LUT4

f = (x1 + x2 + x3)
· (x2⊕ x3 ⊕ x4)
· (x1⊕ x3 ⊕ x5)

22

Hardware Design I (Chap. 9) 43
Computing Architecture Lab.

Hajime Shimada

Implement sequential circuit to FPGA

By utilizing path through FF, we can implement
sequential circuit

D QPRS

CLR
Q’clk

D QPRS

CLR
Q’clk

Clear
Clock

LU
T

FF

LU
T

FF

Clock/clear

r0

r1

r0

r1

Hardware Design I (Chap. 9) 44
Computing Architecture Lab.

Hajime Shimada

Latest FPGAs

Scale of circuit becomes millions gates order
Xilinx Virtex-7: 1955K CLB, 46.5M-bit SRAM block
Altera Stratix-V: 952K CLB, 52.8M-bit SRAM block

Altera utlizes 8-input LUT so that number of CLB becomes small

Operation speed becomes hundreds of MHz
Some of them implements large scale specialized block

Commercial level CPU/DSP, Ethernet MAC, DDR3-SDRAM
interface, G-bit per second level interfaces, ...

Even if in practical use, it sometimes included in commercial
appliances (not only for experimental production)

