
1

1

Hardware Design I Chap. 10
Design of microprocessor

Computing Architecture Lab.
Hajime Shimada

E-mail: shimada@is.naist.jp

Hardware Design I (Chap. 10) 2
Computing Architecture Lab.

Hajime Shimada

Outline

What is microprocessor?
Microprocessor from sequential machine
viewpoint

Microprocessor and Neumann computer
Memory hierarchy
Instruction set architecture

Microarchitecture of the microprocessor
Microarchitecture with sequential processing
Microarchitecture with pipelined processing

Hardware Design I (Chap. 10) 3
Computing Architecture Lab.

Hajime Shimada

What is microprocessor?

LSI for processing data at the center of the
computer

Also, called “processor”
There are several type of microprocessors

Central Processing Unit (CPU)
Microcontroller
Graphic accelerator
Other several accelerators

Hardware Design I (Chap. 10) 4
Computing Architecture Lab.

Hajime Shimada

Central Processing Unit (CPU)

A nucleus of Neumann computer
Detail will be taught in later slide

Sometimes, the word “microprocessor” denotes this
By combining CPU with memories, disks, I/Os, we can
create PC or server
Examples: Intel core i7, Fujitsu SPARC64 VII, AMD
Opteron, ...

Hardware Design I (Chap. 10) 5
Computing Architecture Lab.

Hajime Shimada

Microcontroller

A processor used for control of electric devices
Optimized for those use

e.g. give high current drive ability to output pin to directly drive LED

Many of them can organize computer with one chip
Implement memory hierarchy into them

Example: Renesus H8, Atmel AT91, Zilog Z80, ...
Too many companies provide them

Hardware Design I (Chap. 10) 6
Computing Architecture Lab.

Hajime Shimada

Graphic accelerator

A processor used for processing graphic
Also called Graphic Processing Unit (GPU)

Implement too many ALU to utilize parallelism
In graphic processing, usually, we can process each pixel
independently
It also utilized for high parallelism arithmetic

Examples: NVIDIA GeForce, AMD(ATI) Radeon, ...

2

Hardware Design I (Chap. 10) 7
Computing Architecture Lab.

Hajime Shimada

Other accelerators

There’s several processor to accelerate data processing
which is not suitable to process with CPU or GPU

But recently, GPU intrudes to this area

Usually, it implements much ALU to supply high
arithmetic performance
Example: ClearSpeed CSX, Ageia PhysiX, ...

Hardware Design I (Chap. 10) 8
Computing Architecture Lab.

Hajime Shimada

Outline

What is microprocessor?
Microprocessor from sequential machine
viewpoint

Microprocessor and Neumann computer
Memory hierarchy
Instruction set architecture

Microarchitecture of the microprocessor
Microarchitecture with sequential processing
Microarchitecture with pipelined processing

Hardware Design I (Chap. 10) 9
Computing Architecture Lab.

Hajime Shimada

Microprocessor from sequential circuit
viewpoint

We can abstract microprocessor with following
sequential machine
Inputs

Programs (= instructions)
Data for processing

Outputs: Processed data
State: Register (and register file)

Programs
(=instructions)

data for processing

Processed
data

Clock

Combinational
logic circuit

Register (and register file)

Hardware Design I (Chap. 10) 10
Computing Architecture Lab.

Hajime Shimada

Neumann computer

Neumann computer is current major organization
Point of Neumann computer

Instructions and data are placed in main memory
Instructions manipulate data of flip-flop and memories
We can apply different manipulation by different instruction

Instructions A hardware
which apply
operation
notated in
instruction

to data

Data before
processing

Data after
processing

A hardware
which apply

fixed
operation

to data

Neumann computer Non-Neman computer

Main memory

Data before
processing

Data after
processing

Main memory

Hardware Design I (Chap. 10) 11
Computing Architecture Lab.

Hajime Shimada

Advantages and disadvantages of
Neumann computer

Advantages
We don’t have to modify hardware between different data
processing

EDSAC(1949) is one of the early Neumann computer
ENIAC have to change wire connection if it change processing

We can execute complicated processing with multiple
instructions

Disadvantages (Neumann bottleneck)
Communication between processor and memory increases
Slow memory drags down processor performance

How about non-Neumann computer?
It remains in some specific use (e.g. movie codec)
It begins to reposition with reconfigurable hardware ->Chap. 9

Hardware Design I (Chap. 10) 12
Computing Architecture Lab.

Hajime Shimada

Neumann computer and microprocessor

Microprocessor is a hardware which operate data processing in
Neman computer

Also called “processor” or “Central Processing Unit (CPU)”
It includes a part of main memory (see memory hierarchy)

Hardware organization of the microprocessor differs between its
purpose

For server, for PC, for high performance embedded, for embedded, ...

Instructions A hardware
which apply
operation
notated in
instruction

to data

Data before
processing

Data after
processing

Main memory

This hardware is
a microprocessor Combinational

logic circuit

Register
(and

register file)

3

Hardware Design I (Chap. 10) 13
Computing Architecture Lab.

Hajime Shimada

States in the microprocessor

How we define states of sequential machine in the
processor?

Usually, we call it register
There are many types of registers

Special purpose registers (SPR)
Program counter (PC): Denotes position of instruction which is
executing
Flag register: Denotes carry generation, overflow, ...

Global purpose registers (GPR)
Used for hold data before/after processing (work as a part of main
memory)
Also, used for intermediate data under arithmetic

The organization of register differs between instruction
set architectures Relationship between GPR and

memory hierarchy is shown in later
Hardware Design I (Chap. 10) 14

Computing Architecture Lab.
Hajime Shimada

Inputs for the microprocessor

There are two inputs of sequential machine in the
processor

Instruction: must be defined if we design sequential machine
Data: don’t have to define them

What’s instruction?
Series of bits: e.g. 00000000100001010100000000010000
Usually, we use assembly language to represent it

A programming language which has one to one relationship to
instruction
It defines operation relationship between registers and main
memory (in basic)
e.g. add R8, R4, R5 (GPR #8 = GPR #4 + GPR #5)

<-> 00000000100001010100000000010000 Introduce how to define it
efficiency in later slide

Hardware Design I (Chap. 10) 15
Computing Architecture Lab.

Hajime Shimada

GPR and memory hierarchy (1/2)

In recent processors, the GPR becomes a part of main
memory

Firstly the processor moves data from main memory to register
Processor apply operation to the data in the register
After operation, it write back data to main memory

This organization effectively reduces workload for main
memory

Assuming that we apply multiple operation to data

R
eg

is
te

r

D
is

k

Data
transmission

Data
transmission

M
ai

n
m

em
or

y

In
te

rn
al

pr

oc
es

so
r

FF or SRAM DRAM HDD or SSD
Hardware Design I (Chap. 10) 16

Computing Architecture Lab.
Hajime Shimada

GPR and memory hierarchy (2/2)

We call “memory hierarchy” for those hierarchical
Including disk
It also reduces performance degradation from slow device

Recently, number of hierarchy increasing because the
speed difference between devices is increasing

R
eg

is
te

r

D
is

k

R
eg

is
te

r

L2
 c

ac
he

D
is

k

L1
 c

ac
he

Data
transmission

Data
transmission

M
ai

n
m

em
or

y

M
ai

n
m

em
or

y

Traditional
memory
hierarchy

Recent
memory
hierarchy

SRAMSRAM

Hardware Design I (Chap. 10) 17
Computing Architecture Lab.

Hajime Shimada

Instruction set architecture (ISA)

To create sequential machine, we have to define format
of inputs and internal state

Internal state: denoted by registers (for internal state)
Inputs: instructions

We usually call this definition as Instruction Set
Architecture (ISA)

Including systematic instruction construction method

By defining ISA carefully you can reduce
States (registers)
Combinational logics

Hardware Design I (Chap. 10) 18
Computing Architecture Lab.

Hajime Shimada

Instruction encoding

Instruction is encoded to chunk of binary under ISA
definition

e.g. add R8, R4, R5 (GPR #8 = GPR #4 + GPR #5)
<-> 00000000100001010100000000010000

In usual encoding, we give meaning into some chunk of
bits

op rs rt addr
016212631

op rs rt rd shift func
061116212631

R type

I type

4

Hardware Design I (Chap. 10) 19
Computing Architecture Lab.

Hajime Shimada

Example of instruction encoding (1/3)

Example: Instruction encoding of MIPS
Total length is 32-bit
It has meaning in several chunk of bits

op: Type of operation (arithmetic, load, store, branch, ...)
rs: Source operand 1 for arithmetic
rt: Source operand 2 for arithmetic
rd: Destination operand for arithmetic (store arithmetic result)
shift: Amount of shift
func: Type of arithmetic (supplemental for op)
addr: Immediate value for arithmetic

op rs rt rd shift func
061116212631

op rs rt addr
016212631

R type

I type

Hardware Design I (Chap. 10) 20
Computing Architecture Lab.

Hajime Shimada

Example of instruction encoding (2/3)

add R8, R4, R5

Operation: R8 = R4 + R5 (add: addition)
sub R8, R4, R5

Operation: R8 = R4 - R5 (sub: subtract)

000000 00100 00101 01000 no use 010000
061116212631

000000 00100 00101 01000 no use 010010
061116212631

This difference
indicates different
arithmetic

Hardware Design I (Chap. 10) 21
Computing Architecture Lab.

Hajime Shimada

Example of instruction encoding (3/3)

lw R8, 8(R4)

Operation: Load value in (R4 + 8) position on main memory to
R8 (lw: load word)

bne R4, R5, -5

Operation: if R4 != R5, back to 5 prior instruction (bne: branch
not equal)

100101 00100 01000 0000000000001000
016212631

000101 00100 00101 1111111111111011
016212631

Hardware Design I (Chap. 10) 22
Computing Architecture Lab.

Hajime Shimada

Short Exercise

Let’s translate following assembly to instruction
notated by binary

Refer R-type instruction notation in slides

add R10, R13, R14

Hardware Design I (Chap. 10) 23
Computing Architecture Lab.

Hajime Shimada

Answer

Let’s translate following assembly to instruction
notated by binary

Refer R-type instruction notation in slides

add R10, R13, R14

000000 01101 01110 01010 00000 010000
061116212631

(no use)

Hardware Design I (Chap. 10) 24
Computing Architecture Lab.

Hajime Shimada

Outline

What is microprocessor?
Microprocessor from sequential machine
viewpoint

Microprocessor and Neumann computer
Memory hierarchy
Instruction set architecture

Microarchitecture of the microprocessor
Microarchitecture with sequential processing
Microarchitecture with pipelined processing

5

Hardware Design I (Chap. 10) 25
Computing Architecture Lab.

Hajime Shimada

What’s Microarchitecture?

An implementation of processor on the hardware
We can choose several possible microarchitecture in
same ISA

e.g. Intel Core i7, Intel Atom, AMD Phenon
It can execute same program (e.g. Windows) because ISA is the
same

Usually, we choose microarchitecture for the purpose of
the computer

e.g. Choose low power consumption microarchitecture for
notebook PC

Hardware Design I (Chap. 10) 26
Computing Architecture Lab.

Hajime Shimada

One organization of microprocessor (1/3)

Combinational logics
ALU: execute add, sub, logical arithmetic, shift, ...
Multiplexers: construct data path from instructions and values in
register
Adder after PC: increment PC to indicate next instruction
Adder beside ALU: calculate branch target in branch instruction

A
LU

+

P
C IR

R
F Main

memory
1

Address bus

Data bus

+

Hardware Design I (Chap. 10) 27
Computing Architecture Lab.

Hajime Shimada

One organization of microprocessor (2/3)

Buses for main memory
Address bus: send address value which indicate read/write
position in main memory
Data Bus

Send data value which is read from main memory
Send data value which will be written into main memory

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+

Address bus

Hardware Design I (Chap. 10) 28
Computing Architecture Lab.

Hajime Shimada

One organization of microprocessor (3/3)

Registers
Register file (RF): chunk of GPR

Number is differ between architectures (e.g. 32 in MIPS)
Program counter (PC)
Instruction register (IR): hold instruction comes from main
memory

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+
Address bus

Hardware Design I (Chap. 10) 29
Computing Architecture Lab.

Hajime Shimada

How to understand operation of prior
chunk of hardware?

It seems that it’s hard to understand operation of prior
large hardware -> True
How can we understand it easily?

-> Decompose hardware to 5 part and understand those
operation
This 5 part decomposition has importance in operation

Operate 5 part sequentially: 5 phase operation processor
Finish one instruction with 5 clock pulse

Operate 5 part simultaneously: 5 stage pipelined processor
Finish one instruction with 1 clock pulse (in general case)

Hardware Design I (Chap. 10) 30
Computing Architecture Lab.

Hajime Shimada

Decomposition to 5 part

1. Instruction fetch (IF)
2. Instruction decode (ID), register read
3. Execution (EX)
4. Memory access (MA)
5. Write back to register (WB), and commit

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+

1. 2.(5.) 3. 4. 5.(5.)

6

Hardware Design I (Chap. 10) 31
Computing Architecture Lab.

Hajime Shimada

Operation of IF (1/2)

Manages PC updating
Update with incremented PC value

If instruction is not branch instructions (or not taken branch)
Update with branch target address

If instruction is (take conditional) branch instruction

Read instruction which is indicated by PC value

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+

Hardware Design I (Chap. 10) 32
Computing Architecture Lab.

Hajime Shimada

Operation of IF (2/2)

Manages PC updating
Read instruction which is indicated by PC value

Send content of PC to address bus
Capture instruction (to IR) comes from data bus

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+

add R4, R5, R6

Hardware Design I (Chap. 10) 33
Computing Architecture Lab.

Hajime Shimada

Operation of ID

Read registers by rs or rt bits in instruction
Usually, RF is consist of RAM so that rs or rt becomes address
for RAM

Decode instructions
Generate several control signals from instruction

e.g. signal for multiplexer before PC

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+

Hardware Design I (Chap. 10) 34
Computing Architecture Lab.

Hajime Shimada

Operation of EX

Arithmetic
Memory address generation on memory access is also operated
Detailed arithmetic is indicated by “func” part of instruction

Calculate branch target address
Add PC+1 and immediate value comes from instruction

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+

Hardware Design I (Chap. 10) 35
Computing Architecture Lab.

Hajime Shimada

Operation of MA

Memory access
Send generated address to address bus
If memory access instruction is load, capture data in data bus
If memory access instruction is store, the processor send store
data into data bus

Other instruction: no operation

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+

Hardware Design I (Chap. 10) 36
Computing Architecture Lab.

Hajime Shimada

Operation of WB

Writeback operation result to RF
In instructions which creates result

If branch is taken, write branch target address to PC
Coordinated to IF part largely

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+

-> See IF part slide

7

Hardware Design I (Chap. 10) 37
Computing Architecture Lab.

Hajime Shimada

Example execution of “add R8, R4, R5”

1. Send PC to main memory and read instruction into IR
2. Read register by a part of instruction and decode instruction and

generate signals
3. Apply arithmetic denoted by a part of instruction
4. Do nothing
5. Writeback arithmetic result to RF and increment PC

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+

Hardware Design I (Chap. 10) 38
Computing Architecture Lab.

Hajime Shimada

Example execution of “lw R8, 8(R4)”

1. Send PC to main memory and read instruction into IR
2. Read register by a part of instruction, decode instruction and

generate signals, and apply sign extension to immediate value
3. Create memory address by adding register and immediate values
4. Send address to memory and read data
5. Writeback read data to RF and increment PC

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+

Hardware Design I (Chap. 10) 39
Computing Architecture Lab.

Hajime Shimada

Example execution of “bne R4, R5, -5”

1. Send PC to main memory and read instruction into IR
2. Read register by a part of instruction, decode instruction and

generate signals, and apply sign extension to immediate value
3. Check branch condition by arithmetic result of ALU and generate

target address with adder
4. Do nothing
5. If condition is taken, writeback target address to PC. Otherwise

increment PC

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+

Hardware Design I (Chap. 10) 40
Computing Architecture Lab.

Hajime Shimada

Pipelined processing on processor

Prior example is sequential execution of 5 parts
Are there any way to work them simultaneously?

Process consecutive instructions in each parts
Called “pipelined processing”

Imaging creating product on belt conveyer in factory

A
LU

+

P
C IR

R
F Main

memory
1

Data bus

+
Fetching bne R2, R6, -5 Executing add R8, R4, R5

Decoding lw R7, 8(R3)

-> Prof. Yao’s lecture on Jan. 26

Hardware Design I (Chap. 10) 41
Computing Architecture Lab.

Hajime Shimada

Outlined notation of pipeline

We usually utilize operation (e.g. IF, ID, ...) denoted in
box to represent parallel execution

Horizontal axis denotes time (by clock cycles)
Vertical axis denotes instruction order (by program order)

WBMEMEXIDIFadd R8, R4, R5

lw R7, 8(R3) MEMEXIDIF

bne R2, R6, -5

WBMEMEXIDIF

WBMEMEXIDIF

WBMEMEXIDIF

add R8, R4, R5

lw R7, 8(R3)

Pipelined

Time (by clock cycles)

Sequential

Hardware Design I (Chap. 10) 42
Computing Architecture Lab.

Hajime Shimada

Additional hardware for pipelined
processing

We have to prepare additional FF to keep different instructions
Prepare FF between each part called “pipeline register”
It keeps not only instructions but also related informations (read register
value, arithmetic result, ...)

Each part is called “pipeline stage” or stage

A
LU

+

P
C IR

R
F1

+

Pipeline
register

Hold add R8, R4, R5 and related informations
Hold lw R7, 8(R3) and related informations

8

Hardware Design I (Chap. 10) 43
Computing Architecture Lab.

Hajime Shimada

Pipelined processing from sequential
circuit viewpoint

It becomes anomalistic sequential circuit
Updated state is written into next FF

It gives additional constraint to state
Caused by relationship between instructions

A
LU

+

P
C IR

R
F1

+

Hold add R8, R4, R5 and related informations
Hold lw R7, 8(R3) and related informations

C
ur

re
nt

 s
ta

te

N
ex

t s
ta

te

N
ex

t s
ta

te

C
ur

re
nt

 s
ta

te

Hardware Design I (Chap. 10) 44
Computing Architecture Lab.

Hajime Shimada

Pipeline hazard caused by data hazard

Let’s consider following instructions

Pipeline continuously try read R8 and stop it at ID stage
Called “pipeline stall”

Called “pipeline hazard”: pipeline processing stops with several
reasons

This is a pipeline hazard caused by data dependency
Called “data hazard”
Data dependency: a relationship that later instruction utilize the
result of prior instruction

WBMEMEXIDIF

WBMEMEXID

add R8, R4, R5

sub R6, R8, R7

Read R8 in this point

IDIDIDIF

R8 is not written in this point!!!
Data dependency

Hardware Design I (Chap. 10) 45
Computing Architecture Lab.

Hajime Shimada

Data hazard avoidance with result
forwarding

Pipeline stall is achieved by additional constraint on
sequential machine
Are there any way to avoid it?

-> Result forwarding: passing value without RF
Additional data path is required

A
LU

+

P
C IR

R
F1

WBMEMEXIDIF

WBMEMEXIDIF

add R8, R4, R5

sub R6, R8, R7
R8

Additional data path
for result forwarding

Result forwarding

Hardware Design I (Chap. 10) 46
Computing Architecture Lab.

Hajime Shimada

Pipeline and length of logic (1/2)

Length of (combinational) logic seems the same in
outlined figure between stages
But in practical, it differs

A
LU

+

P
C IR

R
F1

+

WBMEMEXIDIF WBMEMEXIDIF

Hardware Design I (Chap. 10) 47
Computing Architecture Lab.

Hajime Shimada

Pipeline and depth of logic (2/2)

How do we operate those logics?
We have to operate them with latest one (which has longest
logic) because they works with same clock pulse

We have to average them as far as possible
If we consider sequential organization, there’s no
problem

ID WBMEMIF EX

ID WBMEMIF EX

add R8, R4, R5

sub R6, R8, R7

WBMEMEXIDIF

WBMEMEXIDIF

