
1

1

Hardware Design I Chap. 2
Basis of logical circuit, logical

expression, and logical function

Computing Architecture Lab.
Hajime Shimada

E-mail: shimada@is.naist.jp

Hardware Design I (Chap. 2) 2
Computing Architecture Lab.

Hajime Shimada

Outline

z Combinational logical circuit
{ Logic gate (logic element)
{ Definition of combinational logical circuit
{ How to create output signal?

z Logical function
{ Definition of logical function
{ Relationship between logical circuit

z Logical expression
{ Definition of logical expression
{Minterm and maxterm
{ Axiomatic systems
{ Amount of logical expression

2

Hardware Design I (Chap. 2) 3
Computing Architecture Lab.

Hajime Shimada

Review: outlined flow of LSI design

z Define specification
z Definition in hardware description language
{Architectural design

z Circuit with basic logic gates
{Logical design

zMask pattern
{Physical design

zManufacturing

Logic synthesis

Place and route
This chapter treats

this area
•Logical function
•Logical expression

Hardware Design I (Chap. 2) 4
Computing Architecture Lab.

Hajime Shimada

Relationship between technical terms

z If we minimize logical expression, we can implement
minimized logical circuit

Logical
expression 1

Logical
expression 2

Logical
circuit 1
Logical
circuit 2......

Specification

Logical
function Truth table

In this section,
please assume
combinational
logical circuit

3

Hardware Design I (Chap. 2) 5
Computing Architecture Lab.

Hajime Shimada

Detailed talk of logical design

z Specification of sequential machine

z Specification of logical function

z Logical expression

z Simplified logical expression
= Basic logic gates

•Simplify of two level logic
•Simplify of multi level logic

-> Chap. 6

-> later Chap. 2

-> later Chap. 2

-> Chap. 3 and 7

-> Chap. 7 and 8

Hardware Design I (Chap. 2) 6
Computing Architecture Lab.

Hajime Shimada

Logic gate (logic element)

z The electric circuit witch outputs result of logical
operation
{e.g. NOT, NAND
{Both inputs and outputs can only take 0 or 1

x Q
0

x Q
11 0

x
Q

y

NOT gate NAND gate Circuit symbol

Circuit symbol

-> Chap. 1

4

Hardware Design I (Chap. 2) 7
Computing Architecture Lab.

Hajime Shimada

NOT, AND, and OR on Boolean algebra

z Logical circuit operates on Boolean algebra
z Here’s basic logic from Boolean algebra

x Q
0 1
1 0

x Q
x

y

Q
x

y

Q

x y Q
0 0 0
0 1 0
1 0 0
1 1 1

x y Q
0 0 0
0 1 1
1 0 1
1 1 1

NOT
AND OR

Hardware Design I (Chap. 2) 8
Computing Architecture Lab.

Hajime Shimada

NOT, AND, and OR on Venn diagram

z In some case, imaging Venn diagram helps
understanding
{NOT: left area
{AND: shared area
{OR: sum of area

A・B A+BAA

5

Hardware Design I (Chap. 2) 9
Computing Architecture Lab.

Hajime Shimada

NAND and NOR on Boolean algebra

z Physical implementation is easy
{Usually, AND and OR are implemented by combining

NOT and NAND/NOR

x

y

Q
x

y

Q

x y Q
0 0 1
0 1 1
1 0 1
1 1 0

x y Q
0 0 1
0 1 0
1 0 0
1 1 0

NAND

= OR

The circle
represents negation

= AND

NOR

-> Chap. 1

Hardware Design I (Chap. 2) 10
Computing Architecture Lab.

Hajime Shimada

Combinational logical circuit

z The signal flow must be contra flow
z The output of the gate will be defined from input

side
z The output is defined with current input
{No loop in it
{It is also called “acyclic circuit”

In
pu

ts

O
ut

pu
t

Signal flow

6

Hardware Design I (Chap. 2) 11
Computing Architecture Lab.

Hajime Shimada

Let’s assume looped logic circuit (1/2)

z It sometimes gives unstable output
{Let’s assume 1 is inputted under 0 output status

{Let’s assume 1 is inputted under 1 output status

Input Output
0

1 1
0

1

Input Output
1

1 0
1

0

The output switches 0/1 forever!!! ->oscillator

Hardware Design I (Chap. 2) 12
Computing Architecture Lab.

Hajime Shimada

Let’s assume looped logic circuit (2/2)

z We rarely achieve stable circuit with looped
combinational circuit
{ Let’s assume 1 is inputted under 1 output status
z It continues to output 1

{ Once input falls to 0, the output changes to 0 forever

Input
Output1->0

0 0->1
1->0

Input
Output1

1 0
1

Usually, they are rare and utilization is limited...
How to crate loop?
-> Sequential circuit

(Chap. 6)

7

Hardware Design I (Chap. 2) 13
Computing Architecture Lab.

Hajime Shimada

Definition of combinational logic with
directed graph
z Set of vertices: V={a, b, c, d, e, f, g, h}
z Set of edges: E⊆(V×V)

E={(a,e), (b,e), (b,d), (c,f), (d,f), (e,g), (f,g), (g,h)}
z Label of vertex：NOT, NAND, and so on

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

Hardware Design I (Chap. 2) 14
Computing Architecture Lab.

Hajime Shimada

If you felt “what is directed graph?” ...

z Please relearn “graph theory”
{The sets of vertices and edges
{e.g. network connection graph, schematic diagram, ...
{Specific graph: tree, directed graph, weighted

graph, ...
z It is widely used in informatics world
{Syntax tree (compiler)
{Markov chain (voice recognition)
{Perceptron (neural network)

8

Hardware Design I (Chap. 2) 15
Computing Architecture Lab.

Hajime Shimada

About technical terms of set theory

z Set
{Gathered set of elements
{e.g. {0, 1}, {a, b, ..., z}, ...

z Cartesian product
{A set of ordered pairs of elements
{Notation: A × B (A,B: set)
{e.g. {0, 1} × {a, b} = {(0,a), (0,b), (1,a), (1,b)}
{Other notation: V2, {0, 1}2

Hardware Design I (Chap. 2) 16
Computing Architecture Lab.

Hajime Shimada

The syntax of combinational logic from
graph theory

z Directed Acyclic Graph (DAG): (V, E)
{V: set of vertices
{E: set of edges, subset of (V × V)
z (V × V) denotes set of Cartesian product

z Allocate logic gate (e.g. NAND) label to vertices
{Allocate 1 label to 1 vertex

9

Hardware Design I (Chap. 2) 17
Computing Architecture Lab.

Hajime Shimada

Terms of combinational logic (1/3)

z Fan-in: a input side of edge
{e.g. v1 is the fan-in of edge (v1, v2)
{Viewpoint from the v2 side

z Fan-out: a output side of edge (v1, v2)
{e.g. v2 is the fan-out of edge (v1, v2)

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

fan-in

fan-out

primary
output

primary input

path

Hardware Design I (Chap. 2) 18
Computing Architecture Lab.

Hajime Shimada

Terms of combinational logic (2/3)

z Primary input: a vertex which does not have fan-
in
z Primary output: a vertex which does not have

fan-out

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

primary
output

primary input

path

fan-in

fan-out

10

Hardware Design I (Chap. 2) 19
Computing Architecture Lab.

Hajime Shimada

Terms of combinational logic (3/3)

z Path: a set of edges from primary input to
primary output
{e.g. (v1, v2) (v2, v3) ... (vn-1, vn)
{v1 is transitive fan-in
{vn is transitive fan-out

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

primary
output

primary input

path

fan-in

fan-out

Hardware Design I (Chap. 2) 20
Computing Architecture Lab.

Hajime Shimada

Value allocation to logic circuit

z Value allocation
{Allocate 0/1 value to (output of) each vertex
{Adequate allocation: satisfies the truth of gate

z The allocation will be defined if all of primary
input has defined
z It is also called logic simulation

0

1
0

1

NOT

NANDa

b

0

1
1

0

NOT

NANDa

b

Adequate allocation Not adequate allocation

11

Hardware Design I (Chap. 2) 21
Computing Architecture Lab.

Hajime Shimada

The algorithm of value allocation

1. Define the value of primary inputs
{ Primary inputs are called level 0 vertices

2. Define the value of level 1 vertices
z Level 1 vertices: all inputs of them are primary input
z All inputs value are already defined in 1.

3. Define the value of level 2 vertices
z Level 2 vertices: all inputs of them are less than level 1 (level 0

or 1)

4. Define level n vertices until the all of the vertices have
defined
z Level n vertices: all inputs of them are less than level n-1

Hardware Design I (Chap. 2) 22
Computing Architecture Lab.

Hajime Shimada

Example of value allocation (1/4)

z Allocate value to primary inputs (level 0 vertices)
{We can allocate them without constraint
{Usually, they are given

0

1

1

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

Level 0 Level 1

Level 2

Level 3

12

Hardware Design I (Chap. 2) 23
Computing Architecture Lab.

Hajime Shimada

Example of value allocation (2/4)

z Allocate values to level 1 vertices
{Which are only connected to primary inputs

0

1

1
0

1

NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

Level 0 Level 1

Level 2

Level 3

Hardware Design I (Chap. 2) 24
Computing Architecture Lab.

Hajime Shimada

Example of value allocation (3/4)

z Allocate values to level 2 vertices
{Which are only connected to less than level 1 vertices
{See the vertices which values have already allocated

0

1

1
0

1

1
NOT

NAND

NAND

NAND
a

b

c
d

e

f g h

Level 0 Level 1

Level 2

Level 3

13

Hardware Design I (Chap. 2) 25
Computing Architecture Lab.

Hajime Shimada

Example of value allocation (4/4)

z Allocate value to level 3 vertices
{Which are only connected to less than level 2 vertices
{The allocation of primary outputs are the same to the

prior vertices

0

1

1
0

1

1
0NOT

NAND

NAND

NAND
a

b

c
d

e

f g
0

h

Level 0 Level 1

Level 2

Level 3

Hardware Design I (Chap. 2) 26
Computing Architecture Lab.

Hajime Shimada

Short exercise

z Allocate values to left vertices
{If you left time, add level notations to the vertices

0

1

1

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

14

Hardware Design I (Chap. 2) 27
Computing Architecture Lab.

Hajime Shimada

The answer of short exercise

0

1

1

1

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

1

0

1

0
1

1

0

Level 1

Level 2

Level 2

Level 3

Level 4

Level 5

Level 5

Level 6

0

Hardware Design I (Chap. 2) 28
Computing Architecture Lab.

Hajime Shimada

Outline

z Combinational logical circuit
{ Logic gate (logic element)
{ Definition of combinational logical circuit
{ How to create output signal?

z Logical function
{ Definition of logical function
{ Relationship between logical circuit

z Logical expression
{ Definition of logical expression
{Minterm and maxterm
{ Axiomatic systems
{ Amount of logical expression

15

Hardware Design I (Chap. 2) 29
Computing Architecture Lab.

Hajime Shimada

Definition of logical function from
mathematical viewpoint

z Representation of the relationship between input
value and output value
z The definition of n-value logical function:

Projection from {0, 1}n to {0, 1}
{Subset f ⊆ {0, 1}n × {0, 1} which does not include

both (X, 0) ∈ f and (X, 1) ∈ f in arbitrary X
{We denote it y = f(X) if (X, y) ∈ f
{{0, 1}n is called domain
{{0, 1} is called codomain

Hardware Design I (Chap. 2) 30
Computing Architecture Lab.

Hajime Shimada

Example of definition of 3-value
logical function (notated by logical circuit)

z It outputs 0 if we input (0, 0, 0) into it
z It outputs 1 if we input (0, 0, 1) into it

z It outputs 1 if we input (1, 1, 1) into it

In
pu

ts

...

This is
logical function!

O
ut

pu
t

16

Hardware Design I (Chap. 2) 31
Computing Architecture Lab.

Hajime Shimada

Examples of definition of representative
logical function

z The function of NOT ⊆ {0,1}×{0,1}
{{(0, 1), (1, 0)}

z The function of AND ⊆ {0,1}2×{0,1}
{{((0, 0), 0), ((0, 1), 0), ((1, 0), 0), ((1, 1), 1)}

z The function of AND ⊆ {0,1}2×{0,1}
{{((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 1)}

Input Output

Hardware Design I (Chap. 2) 32
Computing Architecture Lab.

Hajime Shimada

Hot to denote them in usual?

z Usually, we do not use mathematical definition
zWe usually use following notations
{Logical circuit
{Truth table
{Logical expression

17

Hardware Design I (Chap. 2) 33
Computing Architecture Lab.

Hajime Shimada

Truth table

zOne of the representation style of logical
function
z Aligning output values for all possible inputs
z The size of n values logical function is 2n

x1 x2 f(x1,x2) g(x1,x2) h(x1,x2)
0 0 0 0 h(0, 0)
0 1 0 1 h(0, 1)
1 0 0 1 h(1, 0)
1 1 1 0 h(1, 1)

Logical function Truth tableOne for one
relationship

If truth tables of two
functions are identical,
the functions are
identical

Hardware Design I (Chap. 2) 34
Computing Architecture Lab.

Hajime Shimada

Relationship between logical function and
logical circuit

z Logical function represents the relationship of
input value and output value in combinational
logical circuit

x1 y
x2

y

x1

x2

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

Relationship
of input/output

Many corresponding
logical circuits

Logical function y

Truth table

18

Hardware Design I (Chap. 2) 35
Computing Architecture Lab.

Hajime Shimada

Relationship between technical terms

z If we minimize logical expression, we can implement
minimized logical circuit

Logical
expression 1

Logical
expression 2

Logical
circuit 1
Logical
circuit 2......

Specification

Logical
function Truth table

Many possible
candidates
for these!

Equal
Unique

Hardware Design I (Chap. 2) 36
Computing Architecture Lab.

Hajime Shimada

Multiple output logical function

z In many case, digital system has multiple
outputs
z Usually, we decompose it to multiple single

output function for simplicity

O
ut

pu
ts

In
pu

ts

19

Hardware Design I (Chap. 2) 37
Computing Architecture Lab.

Hajime Shimada

Truth table of multiple output logical
function

zMultiple output function (m outputs):
Projection from {0, 1}n to {0, 1}m

{List of m projections from {0, 1}n to {0, 1}

x1 x2 f0(x1,x2) f1(x1,x2)

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Hardware Design I (Chap. 2) 38
Computing Architecture Lab.

Hajime Shimada

Operation between logical functions

zWe can extend operation on logical value to
logical function
{(f ・ g) (x1, x2, ..., xn) = f(x1, ..., xn) ・ g(x1,..., xn)
{(f + g) (x1, x2, ..., xn) = f(x1, ..., xn) + g(x1,..., xn)
{(f') (x1, x2, ..., xn) = f(x1, x2, ..., xn)‘

z Detail is taught in following logical expression
section

20

Hardware Design I (Chap. 2) 39
Computing Architecture Lab.

Hajime Shimada

Summary of logical function

z It is a function from {0, 1}n to {0, 1}
{{0, 1}n×{0,1} with some constraint

z It is represented uniquely with truth table
{List of relationship between all inputs and outputs
{But it requires 2n size of memory

zWe can apply operation on it Logical function:
The relationship between
inputs and outputs

Hardware Design I (Chap. 2) 40
Computing Architecture Lab.

Hajime Shimada

Outline

z Combinational logical circuit
{ Logic gate (logic element)
{ Definition of combinational logical circuit
{ How to create output signal?

z Logical function
{ Definition of logical function
{ Relationship between logical circuit

z Logical expression
{ Definition of logical expression
{Minterm and maxterm
{ Axiomatic systems
{ Amount of logical expression

21

Hardware Design I (Chap. 2) 41
Computing Architecture Lab.

Hajime Shimada

Logical expression

zOne of the expression of logical function
{Represent it with arrangement of variable which

denotes logical function
{e.g. x + y・z + x・y’・z’

z Efficient than truth table
z But there’s no uniqueness
z x = a+b; y = c・d; z = x+y -> z = (a+b) + (c・d)

a
b
c
d

x
z

a+b
x+y

a
b

x
z

y c・d
c
d y

Hardware Design I (Chap. 2) 42
Computing Architecture Lab.

Hajime Shimada

The definition of logical expression

1. Logical variables are logical expression
{ e.g. x, y, z, x1, x2, a, b, ...

2. If E1 and E2 are logical expression,
 (E1・E2), (E1+E2), (E1') are logical expression
{ e.g. (x・y), (x+y), (x+(y・z)), (x+(y'))

z Generated in recursively
z We can omit brackets by adding order to

operations
{ Order: ', ・, and +

22

Hardware Design I (Chap. 2) 43
Computing Architecture Lab.

Hajime Shimada

The expression of logical function with
logical expression (1/2)

z Pay attention to the logical function which has
only one “1” output in truth table
{Called minterm
{Minterm can be represented by AND and NOT

x y x’･y’ x’･y x･y’ x･y
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Minterm

Hardware Design I (Chap. 2) 44
Computing Architecture Lab.

Hajime Shimada

The expression of logical function with
logical expression (2/2)

z The logical function which has multiple “1”
output is represented by OR of minterms
z The arbitrary function can be represented with

AND, OR, and NOT of logical variable

x y x’･y’ x’･y x･y’ x･y f(x,y)
0 0 1 0 0 0 0
0 1 0 1 0 0 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0

= x’・y + x・y’

Minterm

23

Hardware Design I (Chap. 2) 45
Computing Architecture Lab.

Hajime Shimada

Notation only 2-input NAND or NOR

zWe can represent NOT, AND, and OR with
NAND gates by following wire connection
{Called “NAND has functional completeness”

z Similar representation can be done with only
NOR gates

NOT with NAND AND with NAND OR with NAND

See De Morgan’s law in later

Hardware Design I (Chap. 2) 46
Computing Architecture Lab.

Hajime Shimada

Sum of products

z Definition
{ Literal: Logical value or the negation of logical value
z a: positive literal
z a': negative literal

1. Create term with AND of literals
2. Create logical expression with OR of 1.

z e.g. abc + a'b'c + ac, ac + bc + ad'e
z Other names: AND-OR type, two level logic
z The sum of minterms has special name

->Disjunctive Normal Form (DNF)

24

Hardware Design I (Chap. 2) 47
Computing Architecture Lab.

Hajime Shimada

Disjunctive Normal Form (DNF)

z Sum of minterms without same minterm
{Arbitrary logical function can be expressed with DNF

f = a’b + ab’
g = a’b’ + ab

h = a’b’c + a’bc + ab’c + abc’
s = a’b’c + a’bc + ab’c + abc
t = a’b’c’ + a’b’c + abc’ + abc

a b
0 0 a’b’
0 1 a’b
1 0 ab’
1 1 ab

f g
0 1
1 0
1 0
0 1

a b c
0 0 0 a’b’c’
0 0 1 a’b’c
0 1 0 a’bc’
0 1 1 a’bc
1 0 0 ab’c’
1 0 1 ab’c
1 1 0 abc’
1 1 1 abc

h s t
0 0 1
1 1 1
0 0 0
1 1 0
0 0 0
1 1 0
1 0 1
0 1 1

Hardware Design I (Chap. 2) 48
Computing Architecture Lab.

Hajime Shimada

Product of sums

z Definition
1.Create term with OR of literals
2.Create logical expression with AND of 1.

z e.g. (a+b'+c) (a'+b+c)(d+e')
z There’s a counterpart notation of DNF

->Conjunctive Normal Form (CNF)
{Sum of maxterms
{Maxterm: the logical function which has only one “0”

output in truth table

25

Hardware Design I (Chap. 2) 49
Computing Architecture Lab.

Hajime Shimada

Maxterm

z Pay attention to the logical function which has
only one “0” output in truth table
{Called maxterm
{Maxterm can be represented by OR and NOT

x y x+y x+y’ x’+y x’+y’ f(x,y)
0 0 0 1 1 1 0
0 1 1 0 1 1 1
1 0 1 1 0 1 1
1 1 1 1 1 0 0

= (x+y)(x’+y’)

Maxterm

Hardware Design I (Chap. 2) 50
Computing Architecture Lab.

Hajime Shimada

Conjunctive Normal Form (CNF)

z Sum of maxterms without same maxterm
{Arbitrary logical function can be expressed with CNF

f = (a’+b’)(a+b)
g = (a’+b)(a+b’)

h = (a+b+c)(a+b’+c)(a’+b+c)(a’+b’+c’)
s = (a+b+c)(a+b’+c)(a’+b+c)(a’+b’+c)
t = (a+b’+c)(a+b’+c’)(a’+b+c)(a’+b+c’)

a b
0 0 a’b’
0 1 a’b
1 0 ab’
1 1 ab

f g
0 1
1 0
1 0
0 1

a b c
0 0 0 a’b’c’
0 0 1 a’b’c
0 1 0 a’bc’
0 1 1 a’bc
1 0 0 ab’c’
1 0 1 ab’c
1 1 0 abc’
1 1 1 abc

h s t
0 0 1
1 1 1
0 0 0
1 1 0
0 0 0
1 1 0
1 0 1
0 1 1

26

Hardware Design I (Chap. 2) 51
Computing Architecture Lab.

Hajime Shimada

Symbol simulation

z A method to obtain logical expression from
logical circuit
z Propagate symbol from inputs
{Operate expression from lower level

->Similar to value allocation

a

b

c

b'

(a・b)'

(b'・c)'
((a・b)'・(b'・c)')'

Simplify this
with latter technique

Hardware Design I (Chap. 2) 52
Computing Architecture Lab.

Hajime Shimada

Simplify with operation on Boolean
algebra

z The logical expression given from symbol
simulation has complexity
{e.g. ((a・b)'・(b'・c)')'

z How to simplify them?

z Simplify with operation on Boolean algebra
{General operation rule
{De Morgan’s law
{Shannon's expansion

27

Hardware Design I (Chap. 2) 53
Computing Architecture Lab.

Hajime Shimada

Axiomatic systems related simplification
on Boolean algebra

zGeneral operation rules
{Idempotent: a+a = a
{Commutativity: a+b = b+a
{Associatively: (a+b)+c = a+(b+c)
{Absorption: a+(a・b) = a
{Distributive: (a+b)・c = a・c+b・c
{Involution: (a')' = a
{Complements: a+a' = 1
{Identity: a・1 = a
{Domination: a・0 = 0
{De Morgan's law: (a+b)' = a'・b'

a b

Venn diagram

a b

c

Hardware Design I (Chap. 2) 54
Computing Architecture Lab.

Hajime Shimada

Axiomatic systems related simplification
on Boolean algebra

z Duality
{The rule that exchanged “+ and ・” and “0 and 1” will

be approved (Dual rule)
{e.g. a+a = a a・a = a
{e.g. a+a' = 1 � a・a' = 0

zWe can insert arbitrary logical expressions into a,
b, and c in prior equations

28

Hardware Design I (Chap. 2) 55
Computing Architecture Lab.

Hajime Shimada

Review: 2-input logical operation

z AND, OR, NAND, and NOR: described before
z XOR: output 1 if the inputs are not equal
z XNOR: output 1 if the inputs are equal

AND OR NAND NOR XOR XNOR
x y x･y x+y (x･y)’ (x+y)’ x + y (x + y)’
0 0 0 0 1 1 0 1
0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0
1 1 1 1 0 0 0 1

Hardware Design I (Chap. 2) 56
Computing Architecture Lab.

Hajime Shimada

De Morgan’s law

z (x・y)' = x'＋y'
z (x＋y)' = x'・y'
zWe can insert arbitrary logical expressions into x

and y

x y (x･y)' x'+y' (x+y)' x'･y'

0 0 1 1 1 1
0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 0 0 0

Equal Equal

29

Hardware Design I (Chap. 2) 57
Computing Architecture Lab.

Hajime Shimada

De Morgan's law on Venn diagram

z Here’s (x・y)' = x'＋y' on Venn diagram

x y

(x・y)'

x y

x'

x y

y'

x y

x・y

Hardware Design I (Chap. 2) 58
Computing Architecture Lab.

Hajime Shimada

De Morgan's law on circuit level

z NAND and NOR becomes AND and OR with
negated inputs
z (x・y)' = x'＋y'

z (x＋y)' = x'・y'

30

Hardware Design I (Chap. 2) 59
Computing Architecture Lab.

Hajime Shimada

A practical use of De Morgan’s law on
circuit level

z NAND-NAND two level logic circuit
= AND-OR two level logic circuit

1. Apply De Morgan’s law into
latter NAND gate

2. Add involution rule

Hardware Design I (Chap. 2) 60
Computing Architecture Lab.

Hajime Shimada

Generalized De Morgan’s law

zWidely used when you want to negate arbitrary
logical function f

F’(x1, x2,・・・, xn) = G(x1, x2,・・・, xn)

z Xi Xi'
z＋ ・

Under

e.g. ((a・b)'・(b'・c)')' = (a・b) + (b'・c) = a・b + b'・c

e.g. (a’b’+a’b+ab’)’ = (a+b)(a+b’)(a’+b)
= aaa’+aab+ab’a’+ab’b+baa’+bab+bb’a’+bb’b
= ab + ab = ab

31

Hardware Design I (Chap. 2) 61
Computing Architecture Lab.

Hajime Shimada

How to create CNF?

1. Gain DNF of negated function
z Sum of “0” term in truth table

2. Negate function obtained in 1.
a b c
0 0 0 a’b’c’
0 0 1 a’b’c
0 1 0 a’bc’
0 1 1 a’bc
1 0 0 ab’c’
1 0 1 ab’c
1 1 0 abc’
1 1 1 abc

h s t
0 0 1
1 1 1
0 0 0
1 1 0
0 0 0
1 1 0
1 0 1
0 1 1

h’ = a’b’c’ + a’bc’ + ab’c’ + abc

h’’ = (a’b’c’ + a’bc’ + ab’c’ + abc)’

h = (a+b+c)(a+b’+c)
(a’+b+c)(a’+b’+c’)

De Morgan’s law

Hardware Design I (Chap. 2) 62
Computing Architecture Lab.

Hajime Shimada

Short exercise

z Show CNF of following
logical function

a b c d
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

f
1
1
0
1
1
1
1
0
1
1
1
1
1
1
0
1

32

Hardware Design I (Chap. 2) 63
Computing Architecture Lab.

Hajime Shimada

Answer

z Show CNF of following
logical function

a b c d
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

f
1
1
0
1
1
1
1
0
1
1
1
1
1
1
0
1

f’ = a’b’cd’ + a’bcd + abcd’
f = f’’ = (a’b’cd’ + a’bcd + abcd’)’
= (a+b+c’+d)(a+b’+c’+d’)(a’+b’+c’+d)

Hardware Design I (Chap. 2) 64
Computing Architecture Lab.

Hajime Shimada

How to translate logical expression to
sum of products or product of sums

h = a’(b’c + bc) + b’c’ h’ = (a’(b’c + bc) + b’c’)’

h = a’b’c + a’bc + b’c’
= a’c + b’c’

h’ = ab + ac + bc’

h’’ = h = (ab + ac + bc’)’

h = (a’+b’)(a’+c’)(b’+c)

Sum of products

Expand Expand
Negate

Negate

De Morgan’s law

Product of Sums

Note that the expansion
route is not unique

33

Hardware Design I (Chap. 2) 65
Computing Architecture Lab.

Hajime Shimada

Shannon’s expansion

z A technique also used for translating logical
expression to sum of products notation

f(x1, x2,・・・, xn) = x1'・ f(0, x2,・・・, xn) + x1・ f(1, x2,・・・, xn)

e.g. (a’b’+a’b+ab’)’
= a’((1・b’+1・b+0・b’)’)+a((0・b+0・b+1・b’)’)

= a’((b’+b)’)+a((b’)’)

= a’(0)+a(b’’) = ab

Substitute a=0 Substitute a=1

=1

Hardware Design I (Chap. 2) 66
Computing Architecture Lab.

Hajime Shimada

Short exercise

z Expand following function by Shannon’s
expansion and translate it to sum of products
f = {(a・b)'・(b'・c)'}'

34

Hardware Design I (Chap. 2) 67
Computing Architecture Lab.

Hajime Shimada

Answer

z Expand following function by Shannon’s
expansion and translate it to sum of products
f = {(a・b)'・(b'・c)'}'

f = a’・{(0・b)’・(b’・c)’}’ + a・{(1・b)’・(b’・c)’}’

= a’・{(b’・c)’}’ + a・{b’・(b’・c)’}’
= b’・[a’・{(1・c)’}’ + a・{1・(1・c)’}’] + b・[a’・{(0・c)’}’ + a・{0・(0・c)’}’

= b’・(a’・c + a・c) + b・a
= (a’ + a)・b’・c + a・b = a・b + b’・c

=1 =b’

=c =c =1=0

=1

Hardware Design I (Chap. 2) 68
Computing Architecture Lab.

Hajime Shimada

Equivalence of logical function

z There are equivalent logical expression in each
logical function
{In logical circuits design, there’s possibility that it

includes same circuits (= same logical expression)
-> Redundant! (consume unnecessary silicon resources)

z How to check equivalence of them?
{Checking on truth table is one method
zThe size of truth table is 2n on n-value

{Cogitated algorithm or data structure are required
-> Later Chap. 2

35

Hardware Design I (Chap. 2) 69
Computing Architecture Lab.

Hajime Shimada

Quantity of logical function

z The logical function can be represented uniquely with
truth table

z But there are 22n of logical functions in n-value logical
function x y Q

0 0 ?
0 1 ?
1 0 ?
1 1 ?

There are 24 possible outputs

x y
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Hardware Design I (Chap. 2) 70
Computing Architecture Lab.

Hajime Shimada

Examples of 2-input logical function

z There’s possible functions which are not named
z But usually, there’s no use

AND XOR
x y x･y x + y (= x) (= 0) (= y) (= 1)
0 0 0 0 1 0 0 1
0 1 0 1 0 0 1 1
1 0 0 1 1 0 0 1
1 1 1 0 0 0 1 1

36

Hardware Design I (Chap. 2) 71
Computing Architecture Lab.

Hajime Shimada

Quantity of logical function

z It increases dramatically in proportion to the
number of values
{28 = 256 in 3-value function
{216 = 65536 in 4-value function
{232 = 4294967296 in 5-value function
{264 (≒ 1.8×1019) in 6-value function
zToo hard to check all of them even if we use computer!

z Let’s consider how to reduce number of logical
functions

Hardware Design I (Chap. 2) 72
Computing Architecture Lab.

Hajime Shimada

Symmetry logical function

zQuantity of logical function becomes 2n+1 if the
function has perfect symmetry
{The outputs do not change under permutation of all

variables
{e.g. x’1・x2・x3+x1・x’2・x3+x1・x2・x’3

Example of symmetry: f(x1,x2) = x1 + x2 (= x2 + x1)
Example of not symmetry: f(x1,x2) = x’1 + x2 (≠ x’2 + x1)

The logical function is symmetry on xi and xj if outputs
do not change under permutation of xi and xj

